Answer:
Explanation:
Gluconeogenesis and glycolysis are coordinated so that within a cell one pathway is relatively inactive while the other is highly active. If both sets of reactions were highly active at the same time, the net result would be the hydrolysis of four nucleotide triphosphates (two ATP plus two GTP) per reaction cycle. Both glycolysis and gluconeogenesis are highly exergonic under cellular conditions, and so there is no thermodynamic barrier to such simultaneous activity. However, the amounts and activities of the distinctive enzymes of each pathway are controlled so that both pathways are not highly active at the same time. The rate of glycolysis is also determined by the concentration of glucose, and the rate of gluconeogenesis by the concentrations of lactate and other precursors of glucose.
The interconversion of fructose 6-phosphate and fructose 1,6-bisphosphate is stringently controlled (Figure 16.30). As discussed in Section 16.2.1, AMP stimulates phosphofructokinase, whereas ATP and citrate inhibit it. Fructose 1,6-bisphosphatase, on the other hand, is inhibited by AMP and activated by citrate. A high level of AMP indicates that the energy charge is low and signals the need for ATP generation. Conversely, high levels of ATP and citrate indicate that the energy charge is high and that biosynthetic intermediates are abundant. Under these conditions, glycolysis is nearly switched off and gluconeogenesis is promoted.
Answer:
3.011 × 10²³ atoms of Al
Explanation:
Given data:
Number of moles of Al₂(SO₄)₃ = 0.25 mol
Number of atoms of Al = ?
Solution:
In one mole of Al₂(SO₄)₃ there are 2 moles of Al.
In 0.25 mol × 2 = 0.5 mol
1 mole of any substance contain 6.022 × 10²³ atoms.
In 0.5 moles of Al:
1 mole contain 6.022 × 10²³ atoms.
0.5 mol × 6.022 × 10²³ atoms/ 1 mol
3.011 × 10²³ atoms
Answer:
Electrons are trapped inside the atom because of the attraction forces with positively charged protons that are found in the nucleus.
In balancing equations, we aim to get equal numbers of every type of atom on both sides of the equation, in order to satisfy the law of conservation of mass (which states that in a chemical reaction, every atom in the reactants is reorganised to form products, without exception). Therefore, let me walk you through question a:
<span>_Fe + _ H2SO4 --> _Fe2 (SO4)3 + _H2
First, take a stock-check of exactly what we currently have on each side (assuming that each _ represents a 1):
LHS: Fe = 1, H = 2, S = 1, O = 4
RHS: Fe = 2, H = 2, S = 3, O = 12,
There are two things to note here. Firstly, H2 (it should be subscript in reality) represents two hydrogen atoms bonded together as part of the ionic compound H2SO4 (sulphuric acid) - this two only applies to the symbol which is directly before it. Hence, H2SO4 only contains 1 sulphur atom, because the 2 applies to the hydrogen and the 4 applies to the oxygen. Secondly, the bracket before the 3 (which should also be subscript) means that there is 3 of everything within the bracket - (SO4)3 contains 3 sulphur atoms and 12 oxygen atoms (4 * 3 = 12).
Now let's start balancing. As a prerequisite, you must keep in mind that we can only add numbers in front of whole molecules, whereas it is not scientifically correct to change the little numbers (we could have two sulphuric acids instead of one, represented by 2H2SO4 (where the 2 would be a normal-sized 2 when written down), but we couldn't change H2SO4 to H3SO4).
The iron atoms can be balanced by having two iron atoms on the left-hand side instead of one:
2Fe </span>+ _ H2SO4 --> _Fe2 (SO4)3 + _H2
Now let's balance the sulphur atoms, by multiplying H2SO4 by 3:
2Fe + 3H2SO4 --> _Fe2 (SO4)3 + _H2
This has the added bonus of automatically balancing the oxygens too. This is because SO4- is an ion, which stays the same in a displacement reaction (which this one is). Take another stock check:
LHS: Fe = 2, H = 6, S = 3, O = 12
RHS: Fe = 2, H = 2, S = 3, O = 12
The only mismatch now is in the hydrogen atoms. This is simple to rectify because H2 appears on its own on the right-hand side. Just multiply H2 by 3 to finish off, and fill the third gap with a 1 because it has not been multiplied up. Alternatively, you can omit the 1 entirely:
2Fe + 3H2SO4 --> Fe2 (SO4)3 + 3H2
This is the balanced symbol equation for the displacement of hydrogen with iron in sulphuric acid.
For question b, I will just show you the stages without the explanation (I take the 3 before B2 to be a mistake, because it makes no sense to use 3B2Br6 when B2Br6 balances fine):
<span>B2 Br6 + _ HNO 3 -->_B(NO3)3 +_HBr
B2Br6 + _HNO3 --> _B(NO3)3 + 6HBr
B2Br6 + 6HNO3 --> _B(NO3)3 + 6HBr</span>
<span><span>B2Br6 + 6HNO3 --> 2B(NO3)3 + 6HBr</span>
Hopefully you can get the others now yourself. I hope this helped
</span>