1) <u>Stereo-selective (or enantioselective)</u> reactions form predominately or exclusively one enantiomer.
2) Epoxidation is the addition of a single oxygen atom to an alkene to form an epoxide.
3) <u>Hydrogenation (or reduction)</u> of an alkene forms an alkane by addition of H₂.
4) <u>Dihydroxylation</u> is the addition of two hydroxy groups to a double forming, a 1,2-diol or glycol.
5) <u>oxidative</u> cleavage of an alkene breaks both the σ and π bonds of the double bond to form two carbonyl groups.
6) <u>Regioselective</u> reactions form predominately or exclusively one constitutional isomer.
7) <u>Syn</u> dihydroxylation results when an alkene is treated KMnO4 or OsO4, where each reagent adds two oxygen atoms to the same side of the double bond.
I believe it is D. Hope this helps you!
0.781 moles
Explanation:
We begin by balancing the chemical equation;
O₂ (g) + 2H₂ (g) → 2H₂O (g)
21.8 Liters = 21.8 Kgs
To find how many moles are in 28.1 Kg H₂O;
Molar mass of H₂O = 18 g/mol
28.1/18
= 1.56 moles
The mole ratio between water vapor and oxygen is;
1 : 2
x : 1.56
2x = 1.56
x = 1.56 / 2
x = 0.781
0.781 moles
Metals are to the left of the zig-zag, nonmetals are to the right, and metalloids lie on/beside the line.
The balanced equation given is:
4NH3 + 3O2 .....> 2N2 + 6H2O
From this equation, we can note that 4 moles of NH3 are required to produce 2 moles of N2.
Therefore, the mole ratio of NH3 to N2 is 4:2 which can be simplified into 2:1