Answer:
<u>CH</u>
Explanation:
Molecular formula of propene : <u>C₃H₆</u>
Take the HCF of carbon and hydrogen atoms :
Then, we can write the formula as :
- 3CH
- This means there are 3 moles present
Empirical Formula :
- Molecular Formula / No. of moles
- C₃H₆ / 3
- <u>CH</u>
<u></u>
The empirical formula of propene is <u>CH</u>
Answer:Molarity
Explanation:M stand for molarity
Answer:

Explanation:
Hello,
In this case, since the Lewis theory is based on the bonds formation between atoms via the valence electrons, we can verify the chemical formula of the compound formed by strontium and nitrogen by noticing that strontium has two valence electrons as it is in group IIA, for that reason, two nitrogens should be available for bonding. Therefore, since nitrogen is in group VA, it is said that three electrons are required to attain the octet (maximum amount bonded electrons), for that reason, three strontiums are should be available for bonding. In such a way, the formula should be:

Regards.
0.300 M IKI represents the
concentration which is in molarity of a potassium iodide solution. This means
that for every liter of solution there are 0.300 moles of potassium iodide. Knowing
that molarity is a ratio of solute to solution.
By using a conversion factor:
100 ml x (1L / 1000 mL) x (0.300
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 4.98 g
Therefore, in the first
conversion by simply converting the unit of volume to liter, Molarity is in L
where the volume is in liters. The next step is converted in moles from volume
by using molarity as a conversion factor which is similar to how density can be
used to convert between volume and mass. After converting to moles it is simply
used as molar mass of Kl which is obtained from periodic table to convert from
mole to grams.
In order to get the grams of IKI
to create a 100 mL solution of 0.600 M IKI, use the same formula as above:
100 ml x (1L / 1000 mL) x (0.600
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 9.96 g
<u>Answer:</u> The gas produced when sodium phosphide reacts with water is phosphine.
<u>Explanation:</u>
When sodium phosphide reacts with water molecule, it leads to the production of flammable, poisonous gas known as phosphine along with the production of sodium hydroxide.
The chemical reaction for the reaction of sodium phosphide with water follows the equation:

By Stoichiometry of the reaction:
1 mole of sodium phosphide reacts with 3 moles of water to produce 1 mole of phosphine gas and 3 moles of sodium hydroxide.
Hence, the gas produced when sodium phosphide reacts with water is phosphine.