The laboratory procedure that best illustrate the law of conservation is
heating 100 g of CaCo3 to produce 56 g of CaO (answer C)
<u><em>explanation</em></u>
According to the law of mass conservation , the mass of the reactant must be equal to the mass of the product.
According to option c Heating 100 g CaCO3 to produces 56 g CaO ( 40 +16=56)
The remaining mass = 100-56 = 44 which would the mass of CO2 [ 12 + (16 x2)]= 44 since CaCO3 decomposes to produce CaO and CO2
Therefore the mass of reactant= 100g
mass of product = 56 g +44 g =100
Therefore the laboratory procedure for decomposition of CaCO<em>3</em> illustrate the law of mass conservation since the mass of reactant = mass of product.
<span>Most living things on Earth are made of carbon.
Living things need carbon in order to live, grow, and reproduce.
Carbon is a finite resource that cycles through the Earth in many forms.
This makes carbon available to living organisms and remains in balance with other chemical reactions in the atmosphere and in bodies of water like ponds and oceans.</span>
Answer:
0.25M HCl
Explanation:
The reaction of HCl with NaOH is:
HCl + NaOH ⇄ H₂O + NaCl
<em>Where 1 mole of HCl reacts per mole of NaOH</em>
The end point was reached when the student added:
0.0500L × (0.1mol / L) = 0.00500 moles of NaOH
As 1 mole of HCl reacted per mole of NaOH, moles of HCl present are:
<em>0.00500 moles HCl</em>
The volume of the sample of hydrochloric acid was 20.0mL = 0.0200L, and concentration of the sample is:
0.00500 mol HCl / 0.0200L = <em>0.25M HCl</em>
Answer:
Earth's average surface gravity is about 9.8 meters per second per second. When an object is tossed off a building top or a cliff apex, for instance, it accelerates toward the ground at 9.8 meters per second per second. The Moon's surface gravity is about 1/6th as powerful or about 1.6 meters per second per second,
Explanation:
Heat is the first one...and the secound one is kinetic