Answer:16/20
Step-by-step explanation:
if you divide the two numbers by 4 you have:
16/4=4
20/4=5
(if you divide or multiply both of the numbers with the same number, the ratio will remain the same)
So the two numbers are same
Answer:
17*2^11
Step-by-step explanation:
Lets start by remembering two property of power.


That is important to remember since 4= 2^2. Hence, the given problem can be written as the following

The inverse of this function is f^-1(x)=x/9
To solve an addition problem, you simply add one number to the other. For example,
If I want to add 4 to 5, I would write the equation 4 + 5 = 9.
To solve a subtraction problem, you simply take a number away from another. For example,
If I want to take 5 away from 9, I would write the equation 9 - 5 = 4.
Hope I helped! :)
To solve this we are going to use formula for the future value of an ordinary annuity:
![FV=P[ \frac{(1+ \frac{r}{n} )^{nt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bnt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic payment

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of years
We know from our problem that the periodic payment is $50 and the number of years is 3, so

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%


Since the interest is compounded monthly, it is compounded 12 times per year; therefore,

.
Lets replace the values in our formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{nt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bnt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=50[ \frac{(1+ \frac{0.04}{12} )^{(12)(3)} -1}{ \frac{0.04}{12} } ]](https://tex.z-dn.net/?f=FV%3D50%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.04%7D%7B12%7D%20%29%5E%7B%2812%29%283%29%7D%20-1%7D%7B%20%5Cfrac%7B0.04%7D%7B12%7D%20%7D%20%5D)

We can conclude that after 3 years you will have $1909.08 in your account.