To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:


Where,
m = mass
= mass at inlet
= Mass at outlet
= Enthalpy at inlet
= Enthalpy at outlet
W = Work done
Q = Heat transferred
= Velocity at inlet
= Velocity at outlet
= Height at inlet
= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects


Using the relation T-P we can find the final temperature:



From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK
So:




Therefore the maximum theoretical work that could be developed by the turbine is 678.248kJ/kg
Since we are given the density and volume, then perhaps we can determine the amount in terms of the mass. All we have to do is find the volume in terms of cm³ so that it will cancel out with the cm³ in the density. The conversion is 1 ft = 30.48 cm. The solution is as follows:
V = (14 ft)(15 ft)(8 ft)(30.48 cm/1 ft)³ = 0.0593 cm³
The mass is equal to:
Mass = (0.00118g/cm³)(0.0593 cm³)
Mass = 7 grams of HCN
Answer:

Explanation:
Moment of inertia of given shell
where
M represent sphere mass
R -sphere radius
we know linear speed is given as 
translational 
rotational 
total kinetic energy will be


fraction of rotaional to total K.E

Answer:
True
Explanation:
Side affects can range from
Problems with periods to Loss of breasts