Answer:
W = 0 J
Explanation:
The amount of work done by gas at constant pressure is given by the following formula:

where,
W = Work done by the gas
P = Pressure of the gas
ΔV = Change in the volume of the gas
Since the volume of the gas is constant. Therefore, there is no change in the volume of the gas:

<u>W = 0 J</u>
Explanation:
A projectile (Cannon ball) is launched at an angle to the horizontal and rises up to a peak while moving horizontally. When it reaches the peak, the projectile starts to fall.
(c) is the correct choice.
El Nino (a), Earth's orbit (b), and solar energy output (d) are all "natural" occurrences. You can't do a thing aboutum.
Fossil fuels ... or, more precisely, humanity's use of vast quantities of fossil fuels as a convenient source of huge quantities of energy ... and the subsequent increase of Carbon Dioxide in the planet's atmosphere, is not the result of "natural" processes. It's the result of human efforts to <em>alter and control</em> Nature, through <em>artificial</em> processes.
Answer:
1050 kg
Explanation:
The formula for kinetic energy is:
KE (kinetic energy) = 1/2 × m × v² where <em>m</em> is the <em>mass in kg </em>and <em>v</em> is the velocity or <em>speed</em> of the object <em>in m/s</em>.
We can now substitute the values we know into this equation.
KE = 472 500 J and v = 30 m/s:
472 500 = 1/2 × m × 30²
Next, we can rearrange the equation to make m the subject and solve for m:
m = 472 500 ÷ (1/2 × 30²)
m = 472 500 ÷ 450
m = 1050 kg
Hope this helps!
Answer:
Strike-slip fault
Explanation:
Transform boundaries play the role of connecting the other plate boundary segments.
When the plates are rubbed against each other, they result in enormous amount of stresses which leads to the breaking of the part of a rock causing earthquakes. Places of occurrence of these breaks are termed as faults.
Strike slip faults results from compression which takes place horizontally, but but in this the rock displacement releases energy and takes place in a horizontal direction which is parallel to the force of compression.