A system that repeats to and from its mean or rest point. that executes harmonic motion. a few examples I've heard of are since the springtime a mass-spring system,a swing, simple pendulum, one more example is a steel ball rolling in a curved is this what you need or do you need three more sentences dish. to get S.H.M a body just displaced away from the resting position and of course then is released. the human body oscillates due to the reinforce that pulls it back do you need anything else answered on this and I'll answer it
A material that has high resistance to the flow of electric current is called an electric resistor
Answer:
Explanation:
Total length of the wire is 29 m.
Let the length of one piece is d and of another piece is 29 - d.
Let d is used to make a square.
And 29 - d is used to make an equilateral triangle.
(a)
Area of square = d²
Area of equilateral triangle = √3(29 - d)²/4
Total area,

Differentiate both sides with respect to d.

For maxima and minima, dA/dt = 0
d = 8.76 m
Differentiate again we get the

(a) So, the area is maximum when the side of square is 29 m
(b) so, the area is minimum when the side of square is 8.76 m
The momentum of a 5kg object that has a velocity of 1.2m/s is 6.0kgm/s.
<h3> MOMENTUM:</h3>
Momentum of a substance is the product of its mass and velocity. That is;
Momentum (p) = mass (m) × velocity (v)
According to this question, an object has a mass of 5kg and velocity of 1.2m/s. The momentum is calculated thus:
Momentum = 5kg × 1.2m/s
Momentum = 6kgm/s.
Therefore, the momentum of a 5kg object that has a velocity of 1.2m/s is 6.0kgm/s.
Learn more about momentum at: brainly.com/question/250648?referrer=searchResults
Answer:
C.As the two objects touch, thermal energy flows as heat from the warmer block to the colder block until particles in both blocks move at the same rate and reach the same temperature.
Explanation:
Heat is the transfer of thermal energy from an object at higher temperature to an object at colder temperature.
The temperature of an object is a measure of how fast the particles in the object move: the higher its temperature, the faster the particles move, the higher the average kinetic energy of the particles in the object. As a result, the particles of the object at higher temperature tend to transfer more energy (called thermal energy) to the particles of the object at colder temperature by colliding with them: this process continues until the particles of the colder object reach the same average kinetic energy as the particles of the warmer object, and this means that the two objects have reached the same temperature.