From the equation; ΔTf = Kf × m
Where, Kf for water = 1.853 K kg/mole; m is the molarity = number of solute/amount of solvent in kg.
Glucose is the solute whose molecular mass is 180 g/mole and water is the solvent.
Moles of solute = 15.5/180 = 0.0861 moles
Amount of solvent in kg = 245/1000 = 0.245 Kg
Therefore; molarity = 0.0861/0.245 = 0.3515 moles/Kg
Therefore; ΔTf = 1.853 × 0.3515 = 0.6513 K
Hence; the depression in freezing point is 0.6513
The freezing point of solution will therefore be;
= 273 - 0.6513 = 272.3487 K
Metals have a low electron affinity- a less likely chance to gain electrons because they want to give up their valence electrons rather than gain electrons, which require more energy than necessary.
Answer: PV = nRT
A gas at STP... This means that the temperature is 0°C and pressure is 1 atm.
R is the gas constant which is 0.08206 L*atm/(K*mol)
Rearranging for volume
V = nRT/P
The temperature and number of moles are held constant. This means that this uses Boyle's Law. (The ideal gas law could be manipulated to give us this result when T and n are held constant.)
PV = k
where k is a constant.
This means that
P₁V₁ = k = P₂V₂
P₁V₁ = P₂V₂
(1 atm) * (1 L) = (2 atm) * V₂
V₂ = 0.5 L
The new volume of the gas is 0.5 L.
Explanation:
Answer:
The answer to your question is the letter D. a decomposition reaction
Explanation:
This is a brief description of the main chemical reactions.
a) A synthesis reaction is when two reactants are combined to form only one product.
b) A disynthesis reaction. I have not heard about this chemical reaction, I think it does not exist.
c) A combustion reaction is when an organic molecule reacts with oxygen to form carbon dioxide and water.
d) A decomposition reaction is when one reactant splits to form two or more products.
PV = nRT
P = (nRT)/V
P = (0.3 mol × 0.08206 atm-l/(mol-K) × (273.15 + 30) K)/(0.5 l)
P = 14.9258934 atm