Answer:
Data:
mass of solute: 35g of NaCl
m.mass of solute: 58g/mol
volume of solution: 501mL
Molarity=?
Explanation:
501ml = 0.5dm3
M= g of solute/m.mass of solute*vol of solution
M= 35/58*0.5
M=1.20
The fourth option on Edgen, "two alcohol functional groups". You're welcome :)
Answer:
2Ag(s) + Cu^2+(aq) ----------> 2Ag^+(aq) + Cu(s)
Explanation:
Ag(s)/Ag^+ (aq) is the anode as shown while Cu^2+(aq)/Cu^2(s) is the cathode.
E°cell= E°cathode -E°anode= 0.34 -0.80= -0.5V
The cell is not spontaneous as written because E°cell is negative. This implies that the electrodes of the cell must be interchanged to make the cell spontaneous.
Answer:
The pressure in the gas is 656mmHg
Explanation:
In calculating the pressure of the gas;
step 1: convert the height of the mercury arm to mmHg
9.60cm = 96.0 mmHg
step 2: convert 752 torr to mmHg
I torr is 1 mmHg
752 torr = 752mmHg
Step 3: since the level of mercury in the container is higher than the level of mercury exposed to the atmosphere, we substrate the values to obtain our pressure.
So, 752mmHg - 96mmHg = 656mmHg
The pressure in the gas container is therefore 656mmHg.
N. B : if the mercury arm is in lower position, you add.
Answer:
For part (a): pHsol=2.22
Explanation:
I will show you how to solve part (a), so that you can use this example to solve part (b) on your own.
So, you're dealing with formic acid, HCOOH, a weak acid that does not dissociate completely in aqueous solution. This means that an equilibrium will be established between the unionized and ionized forms of the acid.
You can use an ICE table and the initial concentration ofthe acid to determine the concentrations of the conjugate base and of the hydronium ions tha are produced when the acid ionizes
HCOOH(aq]+H2O(l]⇌ HCOO−(aq] + H3O+(aq]
I 0.20 0 0
C (−x) (+x) (+x)
E (0.20−x) x x
You need to use the acid's pKa to determine its acid dissociation constant, Ka, which is equal to