Divide through everything by <em>b</em> :
![\dfrac{a+c}{b+d} = \dfrac{\dfrac ab + \dfrac cb}{1 + \dfrac db}](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%2Bc%7D%7Bb%2Bd%7D%20%3D%20%5Cdfrac%7B%5Cdfrac%20ab%20%2B%20%5Cdfrac%20cb%7D%7B1%20%2B%20%5Cdfrac%20db%7D)
Since <em>a/b</em> < <em>c/d</em>, it follows that
![\dfrac{a+c}{b+d} < \dfrac{\dfrac cd+\dfrac cb}{1 + \dfrac db}](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%2Bc%7D%7Bb%2Bd%7D%20%3C%20%5Cdfrac%7B%5Cdfrac%20cd%2B%5Cdfrac%20cb%7D%7B1%20%2B%20%5Cdfrac%20db%7D)
Multiply through everything on the right side by <em>b/d</em> to get
![\dfrac{a+c}{b+d} < \dfrac{\dfrac{bc}{d^2}+\dfrac cd}{\dfrac bd+1} = \dfrac{\dfrac cd\left(\dfrac bd+1\right)}{\dfrac bd+1} = \dfrac cd](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%2Bc%7D%7Bb%2Bd%7D%20%3C%20%5Cdfrac%7B%5Cdfrac%7Bbc%7D%7Bd%5E2%7D%2B%5Cdfrac%20cd%7D%7B%5Cdfrac%20bd%2B1%7D%20%3D%20%5Cdfrac%7B%5Cdfrac%20cd%5Cleft%28%5Cdfrac%20bd%2B1%5Cright%29%7D%7B%5Cdfrac%20bd%2B1%7D%20%3D%20%5Cdfrac%20cd)
and so (<em>a</em> + <em>c</em>)/(<em>b</em> + <em>d</em>) < <em>c/d</em>.
For the other side, you can do something similar and divide through everything by <em>d</em> :
![\dfrac{a+c}{b+d} = \dfrac{\dfrac ad + \dfrac cd}{\dfrac bd + 1}](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%2Bc%7D%7Bb%2Bd%7D%20%3D%20%5Cdfrac%7B%5Cdfrac%20ad%20%2B%20%5Cdfrac%20cd%7D%7B%5Cdfrac%20bd%20%2B%201%7D)
and <em>a/b</em> < <em>c/d</em> tells us that
![\dfrac{a+c}{b+d} > \dfrac{\dfrac ad + \dfrac ab}{\dfrac bd + 1}](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%2Bc%7D%7Bb%2Bd%7D%20%3E%20%5Cdfrac%7B%5Cdfrac%20ad%20%2B%20%5Cdfrac%20ab%7D%7B%5Cdfrac%20bd%20%2B%201%7D)
Then
![\dfrac{a+c}{b+d} > \dfrac{\dfrac ab + \dfrac{ad}{b^2}}{1 + \dfrac db} = \dfrac{\dfrac ab\left(1+\dfrac db\right)}{1 + \dfrac db} = \dfrac ab](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%2Bc%7D%7Bb%2Bd%7D%20%3E%20%5Cdfrac%7B%5Cdfrac%20ab%20%2B%20%5Cdfrac%7Bad%7D%7Bb%5E2%7D%7D%7B1%20%2B%20%5Cdfrac%20db%7D%20%3D%20%5Cdfrac%7B%5Cdfrac%20ab%5Cleft%281%2B%5Cdfrac%20db%5Cright%29%7D%7B1%20%2B%20%5Cdfrac%20db%7D%20%3D%20%5Cdfrac%20ab)
and so (<em>a</em> + <em>c</em>)/(<em>b</em> + <em>d</em>) > <em>a/b</em>.
Then together we get the desired inequality.
Answer:
64
Step-by-step explanation:
Perfect squares are integers multiplied by themselves.
- 2 times 2 = 4
- 3 times 3 = 9
- 4 times 4 = 15
The closest perfect squares to 54 are 49 (7^2) and 64 (8^2).
49 is less than 54, so that's ruled out.
Therefore, the closest perfect square to 54 that is greater than it is 64.
The answer to this is question is C
The first one x>7 nsdnejsjdhwkakns stupid 20 characters