The minimum distance is the perpendicular distance. So establish the distance from the origin to the line using the distance formula.
The distance here is: <span><span>d2</span>=(x−0<span>)^2</span>+(y−0<span>)^2
</span> =<span>x^2</span>+<span>y^2
</span></span>
To minimize this function d^2 subject to the constraint, <span>2x+y−10=0
</span>If we substitute, the y-values the distance function can take will be related to the x-values by the line:<span>y=10−2x
</span>You can substitute this in for y in the distance function and take the derivative:
<span>d=sqrt [<span><span><span>x2</span>+(10−2x<span>)^2]
</span></span></span></span>
d′=1/2 (5x2−40x+100)^(−1/2) (10x−40)<span>
</span>Setting the derivative to zero to find optimal x,
<span><span>d′</span>=0→10x−40=0→x=4
</span>
This will be the x-value on the line such that the distance between the origin and line will be EITHER a maximum or minimum (technically, it should be checked afterward).
For x = 4, the corresponding y-value is found from the equation of the line (since we need the corresponding y-value on the line for this x-value).
Then y = 10 - 2(4) = 2.
So the point, P, is (4,2).
1=-3x-12
13=-3x
3x=-13
X=-4.33333
Brainliest please? Thanks!
Answer:
No
Step-by-step explanation:
Answer:
![g(x)=-2\sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%3D-2%5Csqrt%5B3%5Dx)
or

Step-by-step explanation:
Given
![f(x) = \sqrt[3]x](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Csqrt%5B3%5Dx)
Required
Write a rule for g(x)
See attachment for grid
From the attachment, we have:


We can represent g(x) as:

So, we have:
![g(x) = n * \sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%20%3D%20n%20%2A%20%5Csqrt%5B3%5Dx)
For:

![2 = n * \sqrt[3]{-1}](https://tex.z-dn.net/?f=2%20%3D%20n%20%2A%20%5Csqrt%5B3%5D%7B-1%7D)
This gives:

Solve for n


To confirm this value of n, we make use of:

So, we have:
![-2 = n * \sqrt[3]1](https://tex.z-dn.net/?f=-2%20%3D%20n%20%2A%20%5Csqrt%5B3%5D1)
This gives:

Solve for n


Hence:
![g(x) = n * \sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%20%3D%20n%20%2A%20%5Csqrt%5B3%5Dx)
![g(x)=-2\sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%3D-2%5Csqrt%5B3%5Dx)
or:

Answer:
Step-by-step explanation:
Remark
The editor must have brackets put around the denominator when there are 2 terms.
That means I think the question is (√5) / (√8 - √3). If this is incorrect, leave a note.
To rationalize the denominator, you must multiply numerator and denominator by the conjugate (√8 + √3).
Solution
√5 * (√8 - √3) / ( (√8 - √3) * (√8 + √3) )
I don't think there is any point in removing the brackets in the numerator. Just leave it.
The denominator is a different matter.
denominator = ( (√8 - √3) * (√8 + √3) )
√8 * √8 = 8
√8 * √3 = √24
- √3 * √8 = - √24
-√3 * √3 = - 3
Take a close look at the 2 middle terms. They cancel out because one of them is plus and the other minus.
What you are left with is 8 - 3 = 5
So the final answer is
√5 * (√8 - √3)
=============
5