Answer:
Runner A ran 3 miles everyday whilst his mate ran 3 1/2. How long till they both run the same distance?
Step-by-step explanation:
78
16 times 72 = 1152/(192/13) = 78
Answer:
The required position of the particle at time t is: ![x(t)=\begin{bmatrix}-7.5e^{4t}+1.5e^{2t}\\2.5e^{4t}-1.5e^{2t}\end{bmatrix}](https://tex.z-dn.net/?f=x%28t%29%3D%5Cbegin%7Bbmatrix%7D-7.5e%5E%7B4t%7D%2B1.5e%5E%7B2t%7D%5C%5C2.5e%5E%7B4t%7D-1.5e%5E%7B2t%7D%5Cend%7Bbmatrix%7D)
Step-by-step explanation:
Consider the provided matrix.
![v_1=\begin{bmatrix}-3\\1 \end{bmatrix}](https://tex.z-dn.net/?f=v_1%3D%5Cbegin%7Bbmatrix%7D-3%5C%5C1%20%5Cend%7Bbmatrix%7D)
![v_2=\begin{bmatrix}-1\\1 \end{bmatrix}](https://tex.z-dn.net/?f=v_2%3D%5Cbegin%7Bbmatrix%7D-1%5C%5C1%20%5Cend%7Bbmatrix%7D)
![\lambda_1=4, \lambda_2=2](https://tex.z-dn.net/?f=%5Clambda_1%3D4%2C%20%5Clambda_2%3D2)
The general solution of the equation ![x'=Ax](https://tex.z-dn.net/?f=x%27%3DAx)
![x(t)=c_1v_1e^{\lambda_1t}+c_2v_2e^{\lambda_2t}](https://tex.z-dn.net/?f=x%28t%29%3Dc_1v_1e%5E%7B%5Clambda_1t%7D%2Bc_2v_2e%5E%7B%5Clambda_2t%7D)
Substitute the respective values we get:
![x(t)=c_1\begin{bmatrix}-3\\1 \end{bmatrix}e^{4t}+c_2\begin{bmatrix}-1\\1 \end{bmatrix}e^{2t}](https://tex.z-dn.net/?f=x%28t%29%3Dc_1%5Cbegin%7Bbmatrix%7D-3%5C%5C1%20%5Cend%7Bbmatrix%7De%5E%7B4t%7D%2Bc_2%5Cbegin%7Bbmatrix%7D-1%5C%5C1%20%5Cend%7Bbmatrix%7De%5E%7B2t%7D)
![x(t)=\begin{bmatrix}-3c_1e^{4t}-c_2e^{2t}\\c_1e^{4t}+c_2e^{2t} \end{bmatrix}](https://tex.z-dn.net/?f=x%28t%29%3D%5Cbegin%7Bbmatrix%7D-3c_1e%5E%7B4t%7D-c_2e%5E%7B2t%7D%5C%5Cc_1e%5E%7B4t%7D%2Bc_2e%5E%7B2t%7D%20%5Cend%7Bbmatrix%7D)
Substitute initial condition ![x(0)=\begin{bmatrix}-6\\1 \end{bmatrix}](https://tex.z-dn.net/?f=x%280%29%3D%5Cbegin%7Bbmatrix%7D-6%5C%5C1%20%5Cend%7Bbmatrix%7D)
![\begin{bmatrix}-3c_1-c_2\\c_1+c_2 \end{bmatrix}=\begin{bmatrix}-6\\1 \end{bmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bbmatrix%7D-3c_1-c_2%5C%5Cc_1%2Bc_2%20%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D-6%5C%5C1%20%5Cend%7Bbmatrix%7D)
Reduce matrix to reduced row echelon form.
![\begin{bmatrix} 1& 0 & \frac{5}{2}\\ 0& 1 & \frac{-3}{2}\end{bmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bbmatrix%7D%201%26%200%20%26%20%5Cfrac%7B5%7D%7B2%7D%5C%5C%200%26%201%20%26%20%5Cfrac%7B-3%7D%7B2%7D%5Cend%7Bbmatrix%7D)
Therefore, ![c_1=2.5,c_2=1.5](https://tex.z-dn.net/?f=c_1%3D2.5%2Cc_2%3D1.5)
Thus, the general solution of the equation ![x'=Ax](https://tex.z-dn.net/?f=x%27%3DAx)
![x(t)=2.5\begin{bmatrix}-3\\1\end{bmatrix}e^{4t}-1.5\begin{bmatrix}-1\\1 \end{bmatrix}e^{2t}](https://tex.z-dn.net/?f=x%28t%29%3D2.5%5Cbegin%7Bbmatrix%7D-3%5C%5C1%5Cend%7Bbmatrix%7De%5E%7B4t%7D-1.5%5Cbegin%7Bbmatrix%7D-1%5C%5C1%20%5Cend%7Bbmatrix%7De%5E%7B2t%7D)
![x(t)=\begin{bmatrix}-7.5e^{4t}+1.5e^{2t}\\2.5e^{4t}-1.5e^{2t}\end{bmatrix}](https://tex.z-dn.net/?f=x%28t%29%3D%5Cbegin%7Bbmatrix%7D-7.5e%5E%7B4t%7D%2B1.5e%5E%7B2t%7D%5C%5C2.5e%5E%7B4t%7D-1.5e%5E%7B2t%7D%5Cend%7Bbmatrix%7D)
The required position of the particle at time t is: ![x(t)=\begin{bmatrix}-7.5e^{4t}+1.5e^{2t}\\2.5e^{4t}-1.5e^{2t}\end{bmatrix}](https://tex.z-dn.net/?f=x%28t%29%3D%5Cbegin%7Bbmatrix%7D-7.5e%5E%7B4t%7D%2B1.5e%5E%7B2t%7D%5C%5C2.5e%5E%7B4t%7D-1.5e%5E%7B2t%7D%5Cend%7Bbmatrix%7D)
Answer:
Step-by-step explanation:
2(6x² - 3) = 11x² - x
2*6x² - 2*3 = 11x² - x
12x² - 6 = 11x² -x
Subtract 11x² from both sides
12x² - 11x² - 6 = -x
x² - 6 = -x
x² + x - 6= 0
Sum =1
Product = -6
Factors = 3 , (-2) { 3*(-2) = -6 & 3 +(-2) = 1}
x² + 3x - 2x - 6 = 0
x(x + 3) - 2(x + 3)= 0
(x +3)(x - 2) = 0
Answer: No
Step-by-step explanation:
The distance hiked of Mark is represented by 2*t + 100
and the distance hiked of Zoe is represented by 2*t
here, you can see that the slope of both equations is equal, this means that in the same lapse of time, Zoe and Mark displace the same amount, but because Mark started earlier, he has a y-intercept bigger than zero, so for every value of t, the distance that Mark hiked will be higher than the one of Zoe.
We can represent this by:
2*t + 100 > 2*t
100 > 0
So the distance hiked by Mark is always bigger than the one of Zoe