Answer:
15 possible combinations
Step-by-step explanation:
Given


Required
Determine the possible number of combinations
The question emphasizes on "selection" which means "combination".
So; To answer this question, we apply the following combination formula:

In this case:


The formula becomes:






<em>Hence, there are 15 possible combinations</em>
Answer:
10 rad 3 / 2
Step-by-step explanation:
x = missing angle of the full traingle
180 - (90 + 60) = x
180 - 150 = x
30 = x
10 rad 3 / 2 = x
this is just my understanding of the problem- im sorry if im incorrect
(e) Each license has the formABcxyz;whereC6=A; Bandx; y; zare pair-wise distinct. There are 26-2=24 possibilities forcand 10;9 and 8 possibilitiesfor each digitx; yandz;respectively, so that there are 241098 dierentlicense plates satisfying the condition of the question.3:A combination lock requires three selections of numbers, each from 1 through39:Suppose that lock is constructed in such a way that no number can be usedtwice in a row, but the same number may occur both rst and third. How manydierent combinations are possible?Solution.We can choose a combination of the formabcwherea; b; carepair-wise distinct and we get 393837 = 54834 combinations or we can choosea combination of typeabawherea6=b:There are 3938 = 1482 combinations.As two types give two disjoint sets of combinations, by addition principle, thenumber of combinations is 54834 + 1482 = 56316:4:(a) How many integers from 1 to 100;000 contain the digit 6 exactly once?(b) How many integers from 1 to 100;000 contain the digit 6 at least once?(a) How many integers from 1 to 100;000 contain two or more occurrencesof the digit 6?Solutions.(a) We identify the integers from 1 through to 100;000 by astring of length 5:(100,000 is the only string of length 6 but it does not contain6:) Also not that the rst digit could be zero but all of the digit cannot be zeroat the same time. As 6 appear exactly once, one of the following cases hold:a= 6 andb; c; d; e6= 6 and so there are 194possibilities.b= 6 anda; c; d; e6= 6;there are 194possibilities. And so on.There are 5 such possibilities and hence there are 594= 32805 such integers.(b) LetU=f1;2;;100;000g:LetAUbe the integers that DO NOTcontain 6:Every number inShas the formabcdeor 100000;where each digitcan take any value in the setf0;1;2;3;4;5;7;8;9gbut all of the digits cannot bezero since 00000 is not allowed. SojAj= 9<span>5</span>
Answer:
Step-by-step explanation:
4/5 is the same as 4 divided by 5.
you had 4/5 of a cookie. How much percent did you have ?
Answer:
Step-by-step explanation: