Answer:
11
Explanation:
An atomic number of 11 means this atom will have 11 protons. A mass number of 23 means 23 - 11 this atom will have 12 neutrons. Since this atom is neutral the positive protons must be equal to the negative electrons. This atom will have 11 electrons
Answer:
4.20 moles NF₃
Explanation:
To convert between moles of N₂ and NF₃, you need to use the mole-to-mole ratio from the balanced equation. This ratio consists of the coefficients of both molecules from the balanced equation. The molecule you are converting from (N₂) should be in the denominator of the ratio because this allows for the cancellation of units. The final answer should have 3 sig figs because the given value (2.10 moles) has 3 sig figs.
1 N₂ + 3 F₂ ---> 2 NF₃
2.10 moles N₂ 2 moles NF₃
--------------------- x --------------------- = 4.20 moles NF₃
1 mole N₂
Answer:
The correct answer is - transparent medium.
Explanation:
A transparent substance or medium is the substance that allows light to pass through it. Light moves through these substances as they do not absorb the light and do not reflect too.
The example of such substances is glass, air or water. These substances allow light to pass through them.
Thus, The correct answer is - transparent medium.
In an ionic compound the atoms are linked via ionic bonds. These are formed by the transfer of electrons from one atom to the other. The atom that loses electrons gains a positive charge whereas the atom that accepts electrons gains a negative. This happens in accordance with the octet rule wherein each atom is surrounded by 8 electrons
In the given example:
The valence electron configuration of Iodine (I) = 5s²5p⁵
It needs only one electron to complete its octet.
In the given options:
K = 4s¹
C = 2s²2p²
Cl = 3s²3p⁵
P = 3s²3p³
Thus K can donate its valence electron to Iodine. As a result K, will gain a stable noble gas configuration of argon while iodine would gain an octet. This would also balance the charges as K⁺I⁻ creating a neutral molecule.
Ans: Potassium (K)
Answer:

Explanation:
Hello there!
In this case, according to the given information it will be firstly necessary to set up the chemical equation taking place:

We infer we need to calculate the moles of NH3 by using both of the moles of N2 and H2 at the beginning, in order to identify the limiting reactant:

Thus, since hydrogen yields the fewest moles of ammonia, we conclude that we are just able to yield 4 moles of NH3.
Regards!