the answer is
Image 1 shows a monomer, and Image 2 shows a polymer.
Answer:
It is known that 1 mol of a molecule contains 6.023×1023 6.023 × 10 23 number of molecules. So, 0.25 moles of CO2 C O 2.
<u>Answer:</u> The increase in pressure is 0.003 atm
<u>Explanation:</u>
To calculate the final pressure, we use the Clausius-Clayperon equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial pressure which is the pressure at normal boiling point = 1 atm
= final pressure = ?
= Enthalpy change of the reaction = 28.8 kJ/mol = 28800 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![801^oC=[801+273]K=1074K](https://tex.z-dn.net/?f=801%5EoC%3D%5B801%2B273%5DK%3D1074K)
= final temperature = ![(801+1.00)^oC=802.00=[802+273]K=1075K](https://tex.z-dn.net/?f=%28801%2B1.00%29%5EoC%3D802.00%3D%5B802%2B273%5DK%3D1075K)
Putting values in above equation, we get:
![\ln(\frac{P_2}{1})=\frac{28800J/mol}{8.314J/mol.K}[\frac{1}{1074}-\frac{1}{1075}]\\\\\ln P_2=3\times 10^{-3}atm\\\\P_2=e^{3\times 10^{-3}}=1.003atm](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7B1%7D%29%3D%5Cfrac%7B28800J%2Fmol%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B1074%7D-%5Cfrac%7B1%7D%7B1075%7D%5D%5C%5C%5C%5C%5Cln%20P_2%3D3%5Ctimes%2010%5E%7B-3%7Datm%5C%5C%5C%5CP_2%3De%5E%7B3%5Ctimes%2010%5E%7B-3%7D%7D%3D1.003atm)
Change in pressure = 
Hence, the increase in pressure is 0.003 atm
Answer:
Two non bonded electron pairs and four bonded electron pairs
Explanation:
An image of the compound as obtained from chemlibretext is attached to this answer.
The ion ICl4- ion, is an AX4E2 ion. This implies that there are four bond pairs and two lone pairs of electrons. As expected, the shape of the ion is square planar since the lone pairs are found above and below the plane of the square. This is clear from the image attached.
Answer: 530 hours
Explanation:
The reduction of Nickel ions to nickel is shown as:
of electricity deposits 1 mole of Nickel
1 mole of Nickel weighs = 58.7 g
Given quantity = 18.0 kg = 18000 g (1kg=1000g)
58.7 g of Nickel is deposited by 193000 C of electricity
18000 g of Nickel is deposited by =
of electricity
where Q= quantity of electricity in coloumbs = 59182282.8C
I = current in amperes = 31.0 A
t= time in seconds = ?

(1h=3600 sec)

Thus 530 hours are required to plate 18.0 kg of nickel onto the cathode if the current passed through the cell is held constant at 31.0 A