9514 1404 393
Answer:
f(g(x)) = -3x^2 -2x -3
Step-by-step explanation:
<u>Given</u>:
f(x) = -x-7
g(x) = 3x^2 +2x -4
<u>Find</u>:
f(g(x))
<u>Solution</u>:
Substitute per the function definitions.
f(g(x)) = f(3x^2 +2x -4) = -(3x^2 +2x -4) -7
f(g(x)) = -3x^2 -2x -3
Step-by-step explanation:
the line passes through (0,-2) and perpendicular to the graph of y=5x+7.
solution :
the slope = -1/5
the equation :
y+2 = -1/5 (x-0)
y = -1/5x - 2
Answer:

Step-by-step explanation:
We are factoring

So:
((2•5^2x^2) + 485x) - 150
Pull like factors :
50x^2 + 485x - 150 = 5 • (10x^2 + 97x - 30)
Factor
10x^2 + 97x - 30
Step-1: Multiply the coefficient of the first term by the constant 10 • -30 = -300
Step-2: Find two factors of -300 whose sum equals the coefficient of the middle term, which is 97.
-300 + 1 = -299
-150 + 2 = -148
-100 + 3 = -97
-75 + 4 = -71
-60 + 5 = -55
-50 + 6 = -44
-30 + 10 = -20
-25 + 12 = -13
-20 + 15 = -5
-15 + 20 = 5
-12 + 25 = 13
-10 + 30 = 20
-6 + 50 = 44
-5 + 60 = 55
-4 + 75 = 71
-3 + 100 = 97
Step-3: Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, -3 and 100
10x^2 - 3x + 100x - 30
Step-4: Add up the first 2 terms, pulling out like factors:
x • (10x-3)
Add up the last 2 terms, pulling out common factors:
10 • (10x-3)
Step-5: Add up the four terms of step 4:
(x+10) • (10x-3)
Which is the desired factorization
Thus your answer is

adjacent, and complementary
Answer:
a) The correct option is C: 4x
b) The correct option is B: 2x
Step-by-step explanation:
a) Usually when we have a real number multiplying a variable, we do not need to write the multiplication symbol.
So instead of writing:
4×x
We can write:
4x
And this will be equivalent.
Then in this case the correct option is C.
b) We know that if we have the multiplication of A by n, this will be equivalent to add A n times.
Then if we have the sum of A, for example, 4 times, we have:
A + A + A + A
And this can be written as 4*A
In this case, we have the expression x + x.
So we are adding x two times, then this can be written as: 2*x, or, as we said earlier, this also can be written as 2x.
Then the correct option is option B.