1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stellarik [79]
3 years ago
8

Please help

Mathematics
2 answers:
Gnesinka [82]3 years ago
7 0

Answer:

1. subtract 9 from z- z-9

2. add 9 and z - z+9

3. divide 9 by z - 9/z

4. multiply 9 by z - 9z

Step-by-step explanation:

Your welcome!

Brainliest Appreciated!

Alex17521 [72]3 years ago
3 0

Answer:

Subtract 9 from z z-9

Add 9 and z   9+ z

divide 9 by z 9/z

multiply 9 by z 9z

P.S you screen is not pink  

Step-by-step explanation:

You might be interested in
please help me it is URGENT pls the first one is solve and the 2nd one is simplify I will give u lots of points thank you
klasskru [66]
I.) (5x+3)/4-(2x-4)/3=5
Clear fractions:
3·((5x+3)/4)=15x+9
4·((2x-4)/3)=8x-16
15x+9-(8x-16)=5
15x+9-8x+16=5
Combine like terms:
7x+25=5
7x=-20
x=-20/7

II.) (3/11)·(5/6)-(9/12)·(4/3)+(5/13)·(6/15)
Remember PEMDAS
So first multiply:
3/11·5/6=15/66
9/12·4/3=3/3·1/1=3/3=1
5/13·6/15=1/13·6/3=6/39=2/13
(15/66)-1+(2/13)
Combine:
15/66-1/1=15/66-66/66=-51/66
-51/66+2/3=-51/66+44/66=-7/66
Answer: -7/66 :)
7 0
4 years ago
Read 2 more answers
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\
(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\
(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\
S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=
\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\


=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}
\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\
S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\
S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=
\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\
\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
What is the area of this triangle?
trasher [3.6K]

Answer:

sorry I don't know buddy but have a nice day

Step-by-step explanation:

2-_7372773648++_+$

7 0
3 years ago
Read 2 more answers
WILL NAME BRAINLIST!!
Novosadov [1.4K]

Answer:

D

Step-by-step explanation:

The fourth graph makes sense, and follows Deepak's equation. To check if a graph follows an equation, all you have to do is substitute the values of x and y into the equation and see if they follow the equation.

3 0
3 years ago
Read 2 more answers
the lenght of the longer leg of a right triangle is 9 ft longer than the lenght of the shorter leg x. The hypotenuse is 9 ft sho
trasher [3.6K]

Answer:

see below

Step-by-step explanation:  5 23  8 03

the lenght of the longer leg of a right triangle is 9 ft longer than the lenght of the shorter leg x. The hypotenuse is 9 ft shorter than twice the lenght of the shorter leg.

shorter leg    = x

longer leg     = x + 9

hypotenuse  =  2x - 9

Pythagorean theorem  =    a² + b²  = c²

             shorter-leg² + longer-leg² = hypotenuse²

                         x²  +  (x+9)²  = (2x - 9)²                  solve for x

                  x² +  (x+9) (x+9)  =  (2x - 9)(2x - 9)

                 x² +  (x²+18x+81)  =  (4x² - 36x + 81)

                       (2x²+18x+81)  =  (4x² - 36x + 81)

                                          0 =   2x² -54x

                                          0 =  x(2x - 54)  

                           0 = x      and         0 = 2x -54  

                                                       54 = 2x

                                                      27 =  x

shorter leg    = 27        

longer leg     = 36

hypotenuse  =  45

divided all the values by 9 and you get a 3, 4, 5  right triangle, so the answer checks correct  

           

6 0
3 years ago
Other questions:
  • Either enter an exact answer in terms of \piπ or use 3.143.14 for \piπ and enter your answer as a decimal.
    15·1 answer
  • 4//2 and 20/6 are these numbers proportions?
    10·1 answer
  • What is the GCF of 6y^2+18
    7·1 answer
  • <img src="https://tex.z-dn.net/?f=x%5E%7B3%7D%20%3D216" id="TexFormula1" title="x^{3} =216" alt="x^{3} =216" align="absmiddle" c
    11·1 answer
  • Question 20:
    5·1 answer
  • Please answer this correctly
    13·1 answer
  • point M with coordinates (3,4) is the midpoint of the line AB and A has the point (-1,6). what is the point of B?
    14·1 answer
  • Answer so I can give you brainliest.
    15·1 answer
  • If there are 81 students is the band<br> how many boys are in the band
    11·2 answers
  • Brainlyyyyyyyy just helppppppppppppppppppppppppppppppppppppppppppp
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!