Answer: Asteroids, meteoroids, and comets are remnants of the early solar system. This Statement is TRUE.
Explanation:
METEOROID: these are small rocky or metallic objects found in outer space.
ASTEROIDS: these are also known as minor planets of the inner solar system. They are irregularly shaped object in space that orbits the Sun.
COMETS: these are dusty chunk of ice, that moves in a highly elliptical orbit about the sun.
Asteroids, meteoroids, and comets as remnants of the early solar system was further proved in nebular hypothesis
initially proposed in the eighteenth century by German philosopher Immanuel Kant and French mathematician Pierre-Simon Laplace. (The word nebula means a gaseous cloud.) According to the modern version of the theory, about 4.5 to 5 billion years ago the solar system developed out of a huge cloud of gases and dust floating through space. These materials were at first very thin and highly dispersed.
It could possibly melt things
Answer:
No image will be observed.
Explanation:
Images that are created by mirrors are virtual images. This virtual image can only be seen by an observer. In this case, an infinite number of images or no image will be created here as both will be reflecting their own images. Light will continuously bounce back and forth reflecting the same image.
Answer:
Circle
Explanation:
When a charged particle is in motion in a region with magnetic field, the particle experiences a force whose magnitude is given by

where
q is the charge
v is the velocity of the particle
B is the strength of the magnetic field
is the angle between the directions of v and B
In this problem, the velocity of the particle is perpendicular to the magnetic field, so

and the formula reduces to

Also, the direction of this force is perpendicular to the direction of motion of the particle. This means that as the charge moves in the region of the magnetic field, the force acting on it acts as a centripetal force: therefore, the particle will start moving by unifom circular motion, with constant speed (because the magnetic force does no work on the particle, since it is perpendicular to the direction of motion).
So, the path of the particle will be a circle.
A) We want to find the work function of the potassium. Apply this equation:
E = 1243/λ - Φ
E = energy of photoelectron, λ = incoming light wavelength, Φ = potassium work function
Given values:
E = 2.93eV, λ = 240nm
Plug in and solve for Φ:
2.93 = 1243/240 - Φ
Φ = 2.25eV
B) We want to find the threshold wavelength, i.e. find the wavelength such that the energy E of the photoelectrons is 0eV. Plug in E = 0eV and Φ = 2.25eV and solve for the threshold wavelength λ:
E = 1243/λ - Φ
0 = 1243/λ - Φ
0 = 1243/λ - 2.25
λ = 552nm
C) We want to find the frequency associated with the threshold wavelength. Apply this equation:
c = fλ
c = speed of light in a vacuum, f = frequency, λ = wavelength
Given values:
c = 3×10⁸m/s, λ = 5.52×10⁻⁷m
Plug in and solve for f:
3×10⁸ = f(5.52×10⁻⁷)
f = 5.43×10¹⁴Hz