Answer:
Explanation:
The experimenter is rotating on his stool with angular velocity ω ( suppose )
His moment of inertia is I say
We are applying no torque from outside . therefore , the angular momentum will remain the same
Thus angular momentum L = I ω = constant
Thus we can say I₁ ω₁ = I₂ω₂ = constant
here I₁ is the initial moment of inertia and ω₁ is the initial angular velocity
Similarly I₂ is the final moment of inertia and ω₂ is the final angular velocity
When a been bag is dropped on his lap , his moment of inertia increases due to increase in mass
In the above equation, when moment of inertia increases , the angular velocity decreases . So its motion of rotation will decrease .
Answer:
951 Gaspra orbits the Sun near the inner edge of the main asteroid belt between Mars and Jupiter. Gaspra was named by its discoverer Neujmin for a resort on the Crimean peninsula. Consequently, many of the asteroid's craters have been named for resorts and spas worldwide.
Explanation:
Answer:
The fluids speed at a)
and b)
are
and
respectively
c) Th volume of water the pipe discharges is:
Explanation:
To solve a) and b) we should use flow continuity for ideal fluids:
(1)
With Q the flux of water, but Q is
using this on (1) we have:
(2)
With A the cross sectional areas and v the velocities of the fluid.
a) Here, we use that point 2 has a cross-sectional area equal to
, so now we can solve (2) for
:

b) Here we use point 2 as
:

c) Here we need to know that in this case the flow is the volume of water that passes a cross-sectional area per unit time, this is
, so we can write:
, solving for V:

Answer:
I would think a vector but double check that before turning it in
Explanation: