<span>Final Velocity = Vf = 0 m/s --------------> (Vf = 0 because ball's speed at its max height is 0)
Initial Velocity = Vi = ?
Total time (upward & downward) = 8.0 seconds
* Time upward = 4 seconds & ................( As time for ball upward & downward is equal )
* Time downward = 4 seconds..
Gravitational Acceleration = g = -9.8 m/s²
Use Equation;
Vf = Vi - gt
0 = Vi - 9.8 * 4
0 = Vi - 39.2
39.2 = Vi
=> Vi = Initial Velocity = 39.2 m/s</span>
Heat = change in internal energy + Work done The internal energy of a system = heat added and mechanical work done by the system, i.e. U = Q + W rearranging the formula above, will give us: Q = deltaU + W
Q = U - W = 604 kJ - 43.0 kJ = 561,000 J would be the answer.
The Young modulus E is given by:

where
F is the force applied
A is the cross-sectional area perpendicular to the force applied

is the initial length of the object

is the increase (or decrease) in length of the object.
In our problem,

is the initial length of the column,

is the Young modulus. We can find the cross-sectional area by using the diameter of the column. In fact, its radius is:

and the cross-sectional area is

The force applied to the column is the weight of the load:

Now we have everything to calculate the compression of the column:

So, the column compresses by 1.83 millimeters.
Answer:
In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction
Explanation:
Answer:
the speed of the object has become constant.
Explanation:
At terminal velocity, air resistance equals in magnitude the weight of the falling object. Because the two are oppositely directed forces, the total force on the object is zero, and the speed of the object has become constant.