Answer:
Two or more independent functions (say f(x) and g(x)) can be combined to generate a new function (say g(x)) using any of the following approach.
h(x) = f(x) + g(x)h(x)=f(x)+g(x) h(x) = f(x) - g(x)h(x)=f(x)−g(x)
h(x) = \frac{f(x)}{g(x)}h(x)=
g(x)
f(x)
h(x) = f(g(x))h(x)=f(g(x))
And many more.
The approach or formula to use depends on the question.
In this case, the combined function is:
f(x) = 75+ 10xf(x)=75+10x
The savings function is given as
s(x) = 85s(x)=85
The allowance function is given as:
a(x) = 10(x - 1)a(x)=10(x−1)
The new function that combined his savings and his allowances is calculated as:
f(x) = s(x) + a(x)f(x)=s(x)+a(x)
Substitute values for s(x) and a(x)
f(x) = 85 + 10(x - 1)f(x)=85+10(x−1)
Open bracket
f(x) = 85 + 10x - 10f(x)=85+10x−10
Collect like terms
mark as brainiest
f(x) = 85 - 10+ 10xf(x)=85−10+10x
f(x) = 75+ 10xf(x)=75+10x
11 boys and 8 girls because you divide it in half the add 2 and subtract 1. That isn't the wy you are supposed to do it but it works and makes since in my head.
44 sq inches, i am so not sure.
The equation g(x) in vertex form of a quadratic function for the transformations whose graph is a translation 4 units left and 1 unit up of the graph of f(x) is (x-4)² + 1
Given a quadratic function for the transformations given the function f(x) = x²
If the function g(x) of the graph is translated 4 units to the left, the equation becomes (x-4)² (note that we subtracted 4 from the x value
- Translating the graph 1 unit up will give the final function g(x) as (x-4)² + 1 (We added 1 since it is an upward translation.)
Hence the equation g(x) in vertex form of a quadratic function for the transformations whose graph is a translation 4 units left and 1 unit up of the graph of f(x) is (x-4)² + 1
Learn more here: brainly.com/question/15381183