Answer:
23.49m
Explanation:
Distance = velocity x time
8.7 x 2.7 = 23.49m
Answer:
0.558 atm
Explanation:
We must first consider that both gases behaves like ideal gases, so we can use the following formula: PV=nRT
Then, we should consider that, whithin a mixture of gases, the total pressure is the sum of the partial pressure of each gas:
P₀ = P₁ + P₂ + ....
P₀= total pressure
P₁=P₂= is the partial pressure of each gass
If we can consider that each gas is an ideal gas, then:
P₀= (nRT/V)₁ + (nRT/V)₂ +..
Considering the molecular mass of O₂:
M O₂= 32 g/mol
And also:
R= ideal gas constant= 0.082 Lt*atm/K*mol
T= 65°C=338 K
4.98 g O₂ = 0.156 moles O₂
V= 7.75 Lt
Then:
P°O₂=partial pressure of oxygen gas= (0.156x0.082x338)/7.75
P°O₂= 0.558 atm
C. A combined circuit
That’s the answer
An electric field is an electric property associated with each point in space when charge is present in any form.
Well, st first we should find <span>initial momentum for the first person represented in the task which definitely must be :
</span>

And then we find the final one :

Then equate them together :
So we can get the velocity, which is

In that way, according to the main rules of <span>conservation of momentum you can easily find the solution for the second person.
Regards!</span>