The number of possible combinations is given by
... C(18, 3) = 18!/(3!(18-3)!) = 18·17·16/(3·2·1) = 816 . . . . possible combinations
_____
There are 18 ways to choose the first one; 17 ways to choose the second one, and 16 ways to choose the 3rd one. The same 3 students can be chosen in any of 3! = 6 different orders, so the product 18·17·16 must be divided by 6 to get the number of possible combinations in which order doesn't matter.
Answer:
c = <u>0.5 cm</u>
Step-by-step explanation:
Using the Sine rule in the triangle, then
= ( cross- multiply )
c × sin105° = 2 × sin15° ( divide both sides by sin105°
c = ≈ 0.5 cm ( to the nearest tenth )
Answer:
woooooooooooooooooooooo
Step-by-step explanation:
wooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
Answer:
<h2>SEE BELOW</h2>
Step-by-step explanation:
<h3>to understand this</h3><h3>you need to know about:</h3>
<h3>let's solve:</h3>
vertex:(h,k)
therefore
vertex:(-1,4)
axis of symmetry:x=h
therefore
axis of symmetry:x=-1
- to find the quadratic equation we need to figure out the vertex form of quadratic equation and then simply it to standard form i.e ax²+bx+c=0
vertex form of quadratic equation:
therefore
- y=a(x-(-1))²+4
- y=a(x+1)²+4
it's to notice that we don't know what a is
therefore we have to figure it out
the graph crosses y-asix at (0,3) coordinates
so,
3=a(0+1)²+4
simplify parentheses:

simplify exponent:

therefore

our vertex form of quadratic equation is
let's simplify it to standard form
simplify square:

simplify parentheses:

simplify addition:

therefore our answer is D)y=-x²-2x+3
the domain of the function

and the range of the function is

zeroes of the function:




factor out x and -1 respectively:

group:

therefore

3x10^5
+7x10^4
+7x10^3
+0x10^2
+6x10^1
+0x10^0