Answer:
Now we can calculate the p value with the following probability:
Since the p value is lower than the significance level we have enough evidence to reject the null hypothesis and we can conclude that the true proportion for this case is higher than 0.5
Step-by-step explanation:
Data given and notation
n=75 represent the random sample taken
estimated proportion of interest
is the value that we want to test
represent the significance level
Confidence=95% or 0.95
z would represent the statistic
represent the p value
System of hypothesis
We want to verify if the true proportion is higher than 0.5:
Null hypothesis:
Alternative hypothesis:
The statistic is given by:
(1)
Replacing the info given we got:
Now we can calculate the p value with the following probability:
Since the p value is lower than the significance level we have enough evidence to reject the null hypothesis and we can conclude that the true proportion for this case is higher than 0.5
Answer:
where is the diagram for the question?
Answer:
The value of c = -0.5∈ (-1,0)
Step-by-step explanation:
<u>Step(i)</u>:-
Given function f(x) = 4x² +4x -3 on the interval [-1 ,0]
<u> Mean Value theorem</u>
Let 'f' be continuous on [a ,b] and differentiable on (a ,b). The there exists a Point 'c' in (a ,b) such that

<u>Step(ii):</u>-
Given f(x) = 4x² +4x -3 …(i)
Differentiating equation (i) with respective to 'x'
f¹(x) = 4(2x) +4(1) = 8x+4
<u>Step(iii)</u>:-
By using mean value theorem


8c+4 = -3-(-3)
8c+4 = 0
8c = -4

c ∈ (-1,0)
<u>Conclusion</u>:-
The value of c = -0.5∈ (-1,0)
<u></u>
3s+28=85, take away 28 from both sides of the equals to give you 3s=57, divide by 3 on both side to give you s=19.