12 1/2 because you do 5/6 x 15/1 which 6/3 equals 2 and 15/3 equals 5 so you do 5/2 x 5/1
Name three quaderlateral that only sometimes have right angle
Rhombus, trapezoid, and parallelogram
There are 4 terms in the expression
8^2 /2+5(15-7)
=64/2+75-35
=32+40
=72
<span><span>3<span>(<span>5−9</span>)</span></span>+<span>4<span>(<span>4−9</span>)
</span></span></span><span>=<span><span><span>(3)</span><span>(<span>−4</span>)</span></span>+<span>4<span>(<span>4−9</span>)
</span></span></span></span><span>=<span><span>−12</span>+<span>4<span>(<span>4−9</span>)
</span></span></span></span><span>=<span><span>−12</span>+<span><span>(4)</span><span>(<span>−5</span>)
</span></span></span></span><span>=<span><span>−12</span>+<span>−20
</span></span></span><span>=<span>−32
</span></span><span><span>10<span>(<span>9−18</span>)</span></span>−<span>32
</span></span><span>=<span><span><span>(10)</span><span>(<span>−9</span>)</span></span>−<span>32
</span></span></span><span>=<span><span>−90</span>−<span>32
</span></span></span><span>=<span><span>−90</span>−9
</span></span><span>=<span>−<span>99
</span></span></span><span><span>−<span>12<span>(<span>5−7</span>)</span></span></span>−<span>10<span>(<span>2−5</span>)
</span></span></span><span>=<span><span><span>(<span>−12</span>)</span><span>(<span>−2</span>)</span></span>−<span>10<span>(<span>2−5</span>)
</span></span></span></span><span>=<span>24−<span>10<span>(<span>2−5</span>)
</span></span></span></span><span>=<span>24−<span><span>(10)</span><span>(<span>−3</span>)
</span></span></span></span><span>=<span>24−<span>(<span>−30</span>)
</span></span></span><span>=<span>54</span></span>
a) see attachment for graph
b) D: [0, 2.5] <em>time cannot be negative so the x-values start at 0</em>
R: [0, 100] <em>height cannot be negative so the y-values start at 0</em>
c) 84 ft <em>refer to the red coordinate on the graph</em>
d) 1.75 seconds <em>refer to the blue coordinate on the graph</em>
e) 2.5 seconds <em>refer to the green coordinate on the graph</em>
<em />
When looking for coordinates at the various given values, remember that x is time and y is height.
- If you are given time, then look at the y-value for height
- If you are given height, then look at the x-value for the time.
<em />