Answer:
The volume of this pyramid is 16 cm³.
Step-by-step explanation:
The volume
of a solid pyramid can be given as:
,
where
is the area of the base of the pyramid, and
is the height of the pyramid.
Here's how to solve this problem with calculus without using the previous formula.
Imaging cutting the square-base pyramid in half, horizontally. Each horizontal cross-section will be a square. The lengths of these squares' sides range from 0 cm to 3 cm. This length will be also be proportional to the vertical distance from the vertice of the pyramid.
Refer to the sketch attached. Let the vertical distance from the vertice be
cm.
- At the vertice of this pyramid,
and the length of a side of the square is also
. - At the base of this pyramid,
and the length of a side of the square is
cm.
As a result, the length of a side of the square will be
.
The area of the square will be
.
Integrate the area of the horizontal cross-section with respect to
- from the top of the pyramid, where
, - to the base, where
.
.
In other words, the volume of this pyramid is 16 cubic centimeters.
My answer is 38 students
( 22 students take one or both subjects)
Answer:
The average number of customers in the system is 3.2
Step-by-step explanation:
The average number of customes in the system is given by:

In which
is the number of arirvals per time period
is the average number of people being served per period.
The number of arrivals is modeled by the Poisson distribution, while the service time is modeled by the exponential distribution.
Customers arrive at the stand at the rate of 28 per hour
This means that 
Service times are exponentially distributed with a service rate of 35 customers per hour.
This means that
. So
The average number of customers in the system (i.e., waiting and being served) is


The average number of customers in the system is 3.2
Answer:
r = -5. Find the pattern and write the recursive formula: a_n + 1 = - 5 a_nGiven the recursive formula: r =