The answer to this question is b
For the answer to the question above asking to p<span>rove the Pythagorean Theorem using similar triangles. The Pythagorean Theorem states that in a right triangle,
</span>A right triangle consists of two sides called the legs and one side called the hypotenuse (c²) . The hypotenuse (c²)<span> is the longest side and is opposite the right angle.
</span>⇒ α² + β² = c²
<span>
"</span>In any right triangle ( 90° angle) <span>, the sum of the squared lengths of the two legs is equal to the squared length of the hypotenuse."
</span>
For example: Find the length of the hypotenuse of a right triangle if the lengths of the other two sides are 3 inches and 4 inches.
c2 = a2+ b2
c2 = 32+ 42
c2 = 9+16
c2 = 15
c = sqrt25
c=5
Answer:
k = -6/35
Step-by-step explanation:
To make the function continuous
kx^2 = x+k
These must be equal where the function is defined for two different intervals
This is at the point x=-6 so let x=-6
k(-6)^2 = -6+k
36k = -6+k
Subtract k from each side
36k-k = -6+k-k
35k = -6
Divide by 35
35k/35 = -6/35
k = -6/35
Answer:

Step-by-step explanation:
