Answer:
f (x) = 2x^8 + 4x^7
Step-by-step explanation:
I simplified the expression
Sorry, that's how I understood the question
Hope this helps
5829.92
you multiply it as you would regular numbers and then you count the places that the decimal is in front of. in this case it would be 2 numbers, then in the number you got by multiplying, move the decimal 2 places up
Answer:
................Uhm not a question.....................................................o/o
Complete question :
Birth Month Frequency
January-March 67
April-June 56
July-September 30
October-December 37
Answer:
Yes, There is significant evidence to conclude that hockey players' birthdates are not uniformly distributed throughout the year.
Step-by-step explanation:
Observed value, O
Mean value, E
The test statistic :
χ² = (O - E)² / E
E = Σx / n = (67+56+30+37)/4 = 47.5
χ² = ((67-47.5)^2 /47.5) + ((56-47.5)^2 /47.5) + ((30-47.5)^2/47.5) + ((37-47.5)^2/47.5) = 18.295
Degree of freedom = (Number of categories - 1) = 4 - 1 = 3
Using the Pvalue from Chisquare calculator :
χ² (18.295 ; df = 3) = 0.00038
Since the obtained Pvalue is so small ;
P < α ; We reject H0 and conclude that there is significant evidence to suggest that hockey players' birthdates are not uniformly distributed throughout the year.
Answer:
The value of the experimental probability is greater
Step-by-step explanation:
For the theoretical probability;
the probability that a card with the number 3 is selected is 1/5
We consider that the probabilities of each selection are equal, for the theoretical probability
For the experimental, we simply place the frequency of the selection 3 over the total
that will be 128/400 = 8/25
As we know that 8/25 is greater than 1/5
We can conclude that the value of the experimental probability is greater than that of the theoretical