B. If square-foot is on the x-axis then we can substitute for x in the equation and solve, and when we do, we get 2473.302 which is is B when rounded.
20000=p(1+0.05/12)^12*9
Solve for p
P=20,000÷(1+0.05÷12)^(12×9)
P=12,764.49
Answer:
The left side 45.041¯645.0416‾ is not less than the right side 42 which means that the given statement is false.
Answer:
a)0.7
b) 10.03
c) 0.0801
Step-by-step explanation:
Rate of return Probability
9.5 0.1
9.8 0.2
10 0.3
10.2 0.3
10.6 0.1
a.
P(Rate of return is at least 10%)=P(R=10)+P(R=10.2)+P(R=10.6)
P(Rate of return is at least 10%)=0.3+0.3+0.1
P(Rate of return is at least 10%)=0.7
b)
Expected rate of return=E(x)=sum(x*p(x))
Rate of return(x) Probability(p(x)) x*p(x)
9.5 0.1 0.95
9.8 0.2 1.96
10 0.3 3
10.2 0.3 3.06
10.6 0.1 1.06
Expected rate of return=E(x)=sum(x*p(x))
Expected rate of return=0.95+1.96+3+3.06+1.06=10.03
c)
variance of the rate of return=V(x)=![sum(x^2p(x))-[sum(x*p(x))]^2](https://tex.z-dn.net/?f=sum%28x%5E2p%28x%29%29-%5Bsum%28x%2Ap%28x%29%29%5D%5E2)
Rate of return(x) Probability(p(x)) x*p(x) x²*p(x)
9.5 0.1 0.95 9.025
9.8 0.2 1.96 19.208
10 0.3 3 30
10.2 0.3 3.06 31.212
10.6 0.1 1.06 11.236
sum[x²*p(x)]=9.025+19.208+30+31.212+11.236=100.681
variance of the rate of return=V(x)=sum(x²*p(x))-[sum(x*p(x))]²
variance of the rate of return=V(x)=100.681-(10.03)²
variance of the rate of return=V(x)=100.681-100.6009
variance of the rate of return=V(x)=0.0801