8-third piece
4-first shorter piece
4-second shorter piece
Answer:
Before coming back up to the surface the maximum depth, Cassidy went was 6.25 ft. below the water surface
Step-by-step explanation:
The height of Cassidy's diving platform above the water = 6 ft.
The equation that models her dive is d = x² - 7·x + 6
Where;
d = Her vertical position or distance from the water surface
x = Here horizontal distance from the platform
At Cassidy's maximum depth, we have;
dd/dx = d(x² - 7·x + 6)/dx = 2·x - 7 = 0
x = 7/2 = 3.5
∴ At Cassidy's maximum depth, x = 3.5 ft.
The maximum depth,
= d(3.5) = 3.5² - 7 × 3.5 + 6 = -6.25
The maximum depth, Cassidy went before coming back up to the surface =
= -6.25 ft = 6.25 ft. below the surface of the water.
Answer:
1/5
Step-by-step explanation:
5/5 - 4/5 = 1/5
S.F. of 9/24 = 3/8
S.F. of 14/24 = 7/12
S.F. of 10/15 = 2/3
S.F. of 10/12 = 5/6
S.F. of 18/27 = 2/3
S.F. of 10/15 = 2/3
Hope this helps!
Answer:
Step-by-step explanation:
The concept of variance in random variable is applied in solving for the value of c for the estimator cW1 + (1 − c)W2 to be most efficient. Appropriate differentiation of the estimator with respect to c will give the value of c when the result is at minimum.
The detailed analysis and step by step approach is as shown in the attachment.