In order to determine the acceleration of the block, use the following formula:

Moreover, remind that for an object attached to a spring the magnitude of the force acting over a mass is given by:

Then, you have:

by solving for a, you obtain:

In this case, you have:
k: spring constant = 100N/m
m: mass of the block = 200g = 0.2kg
x: distance related to the equilibrium position = 14cm - 12cm = 2cm = 0.02m
Replace the previous values of the parameters into the expression for a:

Hence, the acceleration of the block is 10 m/s^2
Answer:
The sum of positive and negative charges in a unit of Al2O3 equals zero.
Aluminium has a charge of +3 while Oxygen has a charge of -2 on each ion.
Al203 has 2 Al atoms and 3 O atoms.
Charge on Al2O3 = 2(charge on Al ion) + 3(charge on O ion)
= 2(3) + 3(-2)
= 6 - 6
= 0
Explanation:
Aluminium has 3 electrons in the outermost shell and has the tendency to lose those 3 electrons to form a positive ion and have a complete outermost shell.
Whereas, Oxygen has 6 electrons in the outermost and has the tendency to accept two more electrons to form a negative ion and have a complete outermost shell.
The category of galaxy which does not have a distinctive shape is D. an irregular galaxy.
A spiral galaxy has a spiral shape, an elliptical galaxy has an elliptical shape, and a barred-spiral galaxy has a barred-spiral shape. The only galaxy type which does not have a constant shape is an irregular galaxy.
Answer:
a = g = 9.81[m/s^2]
Explanation:
This problem can be solve using the second law of Newton.
We know that the forces acting over the skydiver are only his weight, and it is equal to the product of the mass by the acceleration.
m*g = m*a
where:
g = gravity = 9.81[m/s^2]
a = acceleration [m/s^2]
Note: If the skydiver will be under air resistance forces his acceleration will be different.