Answer:
A microwave
Explanation
The human retina can only detect incident light that falls in waves 400 to 720 nanometers long, so we can't see microwave or ultraviolet wavelengths. This also applies to infrared lights which has wavelengths longer than visible and shorter than microwaves, thus being invisible to the human eye.
Answer: The verb phrase can be found in the last sentence(?
Answer:
Put water at room temperature into a vacuum chamber and begin removing the air. Eventually, the boiling temperature will fall below the water temperature and boiling will begin without heating. Or if you want to be easy but messy, add dry ice to a bowl of water and watch how the water starts to boil.
Answer:
Option D is correct: 170 µW/m²
Explanation:
Given that,
Frequency f = 800kHz
Distance d = 2.7km = 2700m
Electric field Eo = 0.36V/m
Intensity of radio signal
The intensity of radial signal is given as
I = c•εo•Eo²/2
Where c is speed of light
c = 3×10^8m/s
εo = 8.85 × 10^-12 C²/Nm²
I = 3×10^8 × 8.85×10^-12 × 0.36²/2
I = 1.72 × 10^-4W/m²
I = 172 × 10^-6 W/m²
I = 172 µW/m²
Then, the intensity of the radio wave at that point is approximately 170 µW/m²
Answer:
Explanation: The equation that relates resistance of tungsten at different temperatures is as follows
R = R₀ [1 + α ∆T] , R₀ is resistance at lower temperature , R is resistance at higher temperature . α is temperature coefficient of resistivity and ∆T is rise in temperature .
Putting the values
170 = 26 [1 + .0045 ∆T]
∆T = 1230.75
lower temperature = 40◦C
higher temperature = 1230 + 40
= 1270◦C