Answer:
C. The enzyme with mutation 1 has decreased affinity for pyridoxal phosphate, whereas the enzyme with mutation 2 has lost the ability to bind to the substrates.
Explanation:
A coenzyme is an organic cofactor that binds with an enzyme in order to initiate or aid the function of the enzyme. A coenzyme binds to the active site of the enzyme (where the reaction occurs), thereby triggering its activation by modifying protein structure during the reaction. Some examples of coenzymes include Coenzyme A and Adenosine triphosphate (ATP). Pyridoxal phosphate is a coenzyme (it is the active form of vitamin B6) that is required for the function of cystathionase. Moreover, cystathionase is an enzyme that enables cells the synthesis of cysteine from methionine (transsulfuration pathway). The binding of pyridoxal phosphate to the enzyme increases the binding affinity of the enzyme for the substrate, thereby influencing its activity. In this case, it is expected that mutation 1 reduces the binding affinity of the enzyme to the cofactor, and thereby the cofactor is required at a higher concentration to restore normal enzyme activity.
Option A - gyres is the correct answer.
Answer:
Another important class of compounds produced by biotechnology is enzymes. One of the most significant commercial enzymes of this type is subtilisin, which is produced by a bacterium because many stains contain proteins, the manufacturers of laundry detergents include subtilisin in their product.
Explanation:
(please mark me brainliest if you can)
Answer:
What does cellular respiration due?
<h2>Cellular respiration releases stored energy in glucose molecules and converts it into a form of energy that can be used by cells.</h2>
Explanation:
<h2>What are the 7 steps of cellular respiration in order?</h2>
<h2>Overview of the steps of cellular respiration. Glycolysis. Six-carbon glucose is converted into two pyruvates (three carbons each). ATP and NADH are made.</h2>
...
<h2>Glycolysis. ... </h2><h2>Pyruvate oxidation. ... </h2><h2>Citric acid cycle. ... </h2><h2>Oxidative phosphorylation</h2>
<h2>Answer</h2>
<h2> Cellular respiration is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from oxygen molecules[1] or nutrients into adenosine triphosphate (ATP), and then release waste products.[2] The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy because weak high-energy bonds, in particular in molecular oxygen,[3] are replaced by stronger bonds in the products. Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a living cell because of the slow, controlled release of energy from the series of reactions.Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and the most common oxidizing agent providing most of the chemical energy is molecular oxygen (O2).[1] The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transport of molecules across cell membranes.</h2>
Answer:
<h3>creationism, the belief that the universe and the various forms of life were created by God out of nothing.</h3>
.
<h3>Intelligent design (ID) is a pseudoscientific set of beliefs based on the notion that life on earth is so complex that it cannot be explained by the scientific theory of evolution and therefore must have been designed by a supernatural entity.</h3>