Answer:
Self-motivation is the surest way to stay focused. Nearly all the most significant tasks in life are tests for our motivation. Facing challenges and achieving success requires focus; this means we need to be responsible for our motivation. People who are motivated towards achieving their goals are focused on success. The following ideas will help you stay focused and motivated in your work and studies.
Explanation:
Answer:
Now e is due to the ring at a
So
We say
1/4πEo(ea/ a²+a²)^3/2
= 1/4πEo ea/2√2a³
So here E is faced towards the ring
Next is E due to a point at the centre
So
E² = 1/4πEo ( e/a²)
Finally we get the total
Et= E²-E
= e/4πEo(2√2-1/2√2)
So the direction here is away from the ring
Correct question:
Consider the motion of a 4.00-kg particle that moves with potential energy given by

a) Suppose the particle is moving with a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m?
b) What is the magnitude of the force on the 4.00-kg particle when it is located at x = 5.00 m?
Answer:
a) 3.33 m/s
b) 0.016 N
Explanation:
a) given:
V = 3.00 m/s
x1 = 1.00 m
x = 5.00

At x = 1.00 m

= 4J
Kinetic energy = (1/2)mv²

= 18J
Total energy will be =
4J + 18J = 22J
At x = 5

= -0.24J
Kinetic energy =

= 2Vf²
Total energy =
2Vf² - 0.024
Using conservation of energy,
Initial total energy = final total energy
22 = 2Vf² - 0.24
Vf² = (22+0.24) / 2

= 3.33 m/s
b) magnitude of force when x = 5.0m



At x = 5.0 m


= 0.016N
Answer:
θ = 12.60°
Explanation:
In order to calculate the angle below the horizontal for the velocity of the hockey puck, you need to calculate both x and y component of the velocity of the puck, and also you need to use the following formula:
(1)
θ: angle below he horizontal
vy: y component of the velocity just after the puck hits the ground
vx: x component of the velocity
The x component of the velocity is constant in the complete trajectory and is calculated by using the following formula:

vo: initial velocity = 28.0 m/s
The y component is calculated with the following equation:
(2)
voy: vertical component of the initial velocity = 0m/s
g: gravitational acceleration = 9.8 m/s^2
y: height
You solve the equation (2) for vy and replace the values of the parameters:

Finally, you use the equation (1) to find the angle:

The angle below the horizontal is 12.60°