B b b b b b b bb bb bb b b b b b b b b b
Is that a question? If it is not what its the question?
Answer:
1) The maximum jump height is reached at A. 
2) The maximum center of mass height off of the ground is B. 
3) The time of flight is C. 
4) The distance of jump is B. 
Explanation:
First of all we need to decompose velocity in its rectangular components, so

1) We use,
, as we clear it for
and using the fact that
at max height, we obtain 
2) We can use the formula
for
, so

3) We can use the formula
, to find total time of fligth, so
, as it is a second-grade polynomial, we find that its positive root is
4) Finally, we use
, as it has an additional displacement of
due the leg extension we obtain,
, aprox 
Answer:
Static Friction - acts on objects when they are resting on a surface
Sliding Friction - friction that acts on objects when they are sliding over a surface
Rolling Friction - friction that acts on objects when they are rolling over a surface
Fluid Friction - friction that acts on objects that are moving through a fluid
Explanation:
Examples of static include papers on a tabletop, towel hanging on a rack, bookmark in a book
, car parked on a hill.
Example of sliding include sledding, pushing an object across a surface, rubbing one's hands together, a car sliding on ice.
Examples of rolling include truck tires, ball bearings, bike wheels, and car tires.
Examples of fluid include water pushing against a swimmer's body as they move through it , the movement of your coffee as you stir it with a spoon, sucking water through a straw, submarine moving through water.
Answer:
The line charge density is 
Explanation:
Given that,
Diameter = 2.54 cm
Distance = 19.6 m
Potential difference = 115 kV
We need to calculate the line charge density
Using formula of potential difference



Where, r = radius
V = potential difference
Put the value into the formula


Hence, The line charge density is 