the answer will there for be ironic
A 3.1 L sample of hydrogen <u>d. contains the same number of molecules</u>
as 3.1 L of carbon dioxide at the same temperature and pressure.
This is the fundamental principle of <em>Avogadro’s hypothesis</em>: equal volume of gases at the same temperature and pressure contain the same number of molecules.
The sample of carbon dioxide has a <em>greater mass</em>, a <em>greater number of atoms</em>, and a <em>greater density</em>, than the sample of hydrogen.
The correct answer is option A. Energy cannot be created during an ordinary chemical reaction. There is no such thing as an ordinary chemical reaction. Energy cannot be created or destroyed this is according to the law of conservation of energy. It can only be transformed from one form to another form.
You need to use the Ka for the acetic acid and the equilibrium equation.
Ka = 1.85 * 10^ -5
Equilibrium reaction: CH3COOH (aq) ---> CH3COO(-) + H(+)
Ka = [CH3COO-][H+] / [CH3COOH]
Molar concentrations at equilibrium
CH3COOH CH3COO- H+
0.50 - x x x
Ka = x*x / (0.50 - x) = x^2 / (0.50 - x)
Given that Ka is << 1 => 0.50 >> x and 0.50 - x ≈ 0.50
=> Ka ≈ x^2 / 0.50
=> x^2 ≈ 0.50 * Ka = 0.50 * 1.85 * 10^ -5 = 0.925 * 10^ - 5 = 9.25 * 10 ^ - 6
=> x = √ [9.25 * 10^ -6] = 3.04 * 10^ -3 ≈ 0.0030
pH = - log [H+] = - log (x) = - log (0.0030) = 2.5
Answer: 2.5
Answer:
so the answer is figure it out yourself come you all are so smart but you just go onto apps to let it do it for you you are smart have fun
Explanation: