An intensive property is a property that does not change depending on how much mass of it you are considered. An example of an intensive property is density. No matter how much water you examine, the density of the sample will be 1g/cm³.
Answer:
Solid metal
Explanation:
The reduced form of metal ions is the metal in elemental state (simple substance). So, if you have a solution with metal ions and they are reduced, you probably will see the deposition of the metal. For example: if you have a solution with sodium ions (Na⁺), and the ions are then reduced, you will see the aparition of a solid phase of metallic sodium (Na(s)), according to the following half-reaction:
Na⁺ + e- → Na(s)
Answer:

Explanation:
Step 1. Identify the Group that contains X
We look at the consecutive ionization energies and hunt for a big jump between them

We see a big jump between n = 2 and n = 3. This indicates that X has two valence electrons.
We can easily remove two electrons, but the third electron requires much more energy. That electron must be in the stable, filled, inner core.
So, X is in Group 2 and P is in Group 15.
Step 2. Identify the Compound
X can lose two valence electrons to reach a stable octet, and P can do the same by gaining three electrons.
We must have 3 X atoms for every 2 P atoms.
The formula of the compound is
.
Answer:
The vapor pressure in solution is 0,0051 atm
Explanation:
This is the formula for vapor pressure lowering, the colligative property.
P vapor = Pressure sv pure . Xsv
Where Xsv is data.
Xsv means Molar fraction (moles solvent/total n° moles)
Vapor pressure of water, pure is 17.5 mmHg
P vapor = 0,0313 atm . 0163
P vapor in solution = 0,0051 atm
Molar fraction does not have units
A solution will have less vapor pressure than that observed in the pure solvent.