Answer:
-3
Step-by-step explanation:
Answer:
15 units
Step-by-step explanation:
The distance between two points can be found using the following formula:

Given points:
(-7, 5) and (2, -7)
<u>where:</u>
- x₁ = -7
- x₂ = 2
- y₁ = 5
- y₂ = -7
Substitute these points into the formula and simplify:
![\sf d=\sqrt{(2-(-7))^2+((-7)-5)^2} \ \textsf{[simplify the radicand]}\\\\ d=\sqrt{(2+7)^2+(-12)^2} \ \textsf{[simplify]}\\\\d=\sqrt{(9)^2+(-12)^2} \ \textsf{[evaluate the power]}\\\\d=\sqrt{81+144} \ \textsf{[add]}\\\\d=\sqrt{225}\ \textsf{[simplify]}\\\\d=15](https://tex.z-dn.net/?f=%5Csf%20d%3D%5Csqrt%7B%282-%28-7%29%29%5E2%2B%28%28-7%29-5%29%5E2%7D%20%5C%20%5Ctextsf%7B%5Bsimplify%20the%20radicand%5D%7D%5C%5C%5C%5C%20d%3D%5Csqrt%7B%282%2B7%29%5E2%2B%28-12%29%5E2%7D%20%5C%20%5Ctextsf%7B%5Bsimplify%5D%7D%5C%5C%5C%5Cd%3D%5Csqrt%7B%289%29%5E2%2B%28-12%29%5E2%7D%20%5C%20%5Ctextsf%7B%5Bevaluate%20the%20power%5D%7D%5C%5C%5C%5Cd%3D%5Csqrt%7B81%2B144%7D%20%5C%20%5Ctextsf%7B%5Badd%5D%7D%5C%5C%5C%5Cd%3D%5Csqrt%7B225%7D%5C%20%5Ctextsf%7B%5Bsimplify%5D%7D%5C%5C%5C%5Cd%3D15)
The distance between the two points is 15 units.
Learn more here:
brainly.com/question/27708708
brainly.com/question/21152362
Answer:
false
Step-by-step explanation:
since its the absolute value it will be equal to 14
Answer:
<h2><em><u>7</u></em><em><u>.</u></em><em><u> </u></em><em><u><</u></em><em><u>B</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>129</u></em><em><u>°</u></em></h2><h2><em><u>8</u></em><em><u>.</u></em><em><u> </u></em><em><u><</u></em><em><u>N</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>85</u></em><em><u>°</u></em></h2>
Step-by-step explanation:
7. <A + <B = 180° <em>[</em><em>Since</em><em> </em><em>Co-interior</em><em> </em><em>angles</em><em>]</em>
=> 51° + <B = 180°
=> <B = 180° - 51°
=><em><u> <B = 129° (Ans)</u></em>
8. <M + <N = 180° <em> </em><em>[</em><em>Since</em><em> </em><em>Co-interior</em><em> </em><em>angles</em><em>]</em>
=> 95° + <N = 180°
=> <N = 180° - 95°
=> <em><u><N = 85° (Ans)</u></em>