9514 1404 393
Answer:
- Constraints: x + y ≤ 250; 250x +400y ≤ 70000; x ≥ 0; y ≥ 0
- Objective formula: p = 45x +50y
- 200 YuuMi and 50 ZBox should be stocked
- maximum profit is $11,500
Step-by-step explanation:
Let x and y represent the numbers of YuuMi and ZBox consoles, respectively. The inventory cost must be at most 70,000, so that constraint is ...
250x +400y ≤ 70000
The number sold will be at most 250 units, so that constraint is ...
x + y ≤ 250
Additionally, we require x ≥ 0 and y ≥ 0.
__
A profit of 295-250 = 45 is made on each YuuMi, and a profit of 450-400 = 50 is made on each ZBox. So, if we want to maximize profit, our objective function is ...
profit = 45x +50y
__
A graph is shown in the attachment. The vertex of the feasible region that maximizes profit is (x, y) = (200, 50).
200 YuuMi and 50 ZBox consoles should be stocked to maximize profit. The maximum monthly profit is $11,500.
9514 1404 393
Answer:
2 : 1
Step-by-step explanation:
purple : red = (2/3) : (1/3) = 2 : 1
The ratio of purple paint to red paint is 2 : 1.
I think it is B because it isn’t a solid line and it’s going up
Answer:
40 units²
Step-by-step explanation:
Area of Rectangle: A = lw
Step 1: Define variables
<em>l</em> = 8
<em>w</em> = 5
Step 2: Substitute and evaluate
A = 8(5)
A = 40 u²