Answer:
wind has resistance, 10 mph of wind has more than 0 mph
Answer:
A) ψ² describes the probability of finding an electron in space.
Explanation:
The Austrian physicist Erwin Schrödinger formulated an equation that describes the behavior and energies of submicroscopic particles in general.
The Schrödinger equation i<u>ncorporates both particle behavior</u>, in terms of <u>mass m</u>, and wave behavior, in terms of a <u><em>wave function ψ</em></u>, which depends on the location in space of the system (such as an electron in an atom).
The probability of finding the electron in a certain region in space is proportional to the square of the wave function, ψ². According to wave theory, the intensity of light is proportional to the square of the amplitude of the wave, or ψ². <u>The most likely place to find a photon is</u> where the intensity is greatest, that is, <u>where the value of ψ² is greatest</u>. A similar argument associates ψ² with the likelihood of finding an electron in regions surrounding the nucleus.
The type of the bond is present Na₃PO₄ is the ionic bond. the Na₃PO₄ is the ionic compound. yes the Na₃PO₄ is the polyatomic ion.
The Na₃PO₄ is Na⁺ and PO₄³⁻. the phosphorus is the non metal and the oxygen atom is the non metal. the non meta and non meta form the covalent or molecular bond. the bond between the PO₄³⁻ bond is the covalent bond but the overall present in the Na₃PO₄ is the ionic bond . the bons in between the Na⁺ and PO₄³⁻ is the the ionic bond. the PO₄³⁻ id the polyatomic ion .
The bond between the positively charged ion and the negatively charged ion are called as the ionic bond and the compound form is the ionic compound.
To learn more about ionic bond here
brainly.com/question/29005103
#SPJ4
Answer:
300000Pa or 3×10^5 Pa
Explanation:
Since the problem involves only two parameters of volume and pressure, the formula for Boyle's law is suitably used.
Using Boyle's law
P1V1 = P2V2
P1 is the initial pressure = 1.5×10^5Pa
V1 is the initial volume = 0.08m3
P2 is the final pressure (required)
V2 is the final volume = 0.04 m3
From the formula, P2 = P1V1/V2
P2 = 1.5×10^5 × 0.08 ÷ 0.04
= 300000Pa or 3×10^5 Pa.