Answer: 3,3
Step-by-step explanation: the -3 is the x and 6 is the y so if u move 3 down on the y, it’s 3 and if you do 6 right, split the six, -3 plus 3 is 0 plus the remaining 3 is 3
2^3z^9
A for question 1=8z^9
(-8ab)^2
(-8^2a^2b^2)
A for question 2=64a^2b^2
6 (x^3)^2
6 x^6
6x^6
Enjoy!=)
Answer:
n = 1141
Step-by-step explanation:
To find the value of n you add 732 and 409 giving you 1141.
Answer:
The dimensions of the smallest piece that can be used are: 10 by 20 and the area is 200 square inches
Step-by-step explanation:
We have that:

Let the dimension of the paper be x and y;
Such that:


So:

Substitute 128 for Area

Make x the subject

When 1 inch margin is at top and bottom
The length becomes:


When 2 inch margin is at both sides
The width becomes:


The New Area (A) is then calculated as:

Substitute
for x

Open Brackets

Collect Like Terms



To calculate the smallest possible value of y, we have to apply calculus.
Different A with respect to y

Set

This gives:

Collect Like Terms

Multiply through by 


Divide through by 2

Take square roots of both sides



Recall that:



Recall that the new dimensions are:


So:




To double-check;
Differentiate A'




The above value is:

This means that the calculated values are at minimum.
<em>Hence, the dimensions of the smallest piece that can be used are: 10 by 20 and the area is 200 square inches</em>
Answer: The required derivative is 
Step-by-step explanation:
Since we have given that
![y=\ln[x(2x+3)^2]](https://tex.z-dn.net/?f=y%3D%5Cln%5Bx%282x%2B3%29%5E2%5D)
Differentiating log function w.r.t. x, we get that
![\dfrac{dy}{dx}=\dfrac{1}{[x(2x+3)^2]}\times [x'(2x+3)^2+(2x+3)^2'x]\\\\\dfrac{dy}{dx}=\dfrac{1}{[x(2x+3)^2]}\times [(2x+3)^2+2x(2x+3)]\\\\\dfrac{dy}{dx}=\dfrac{4x^2+9+12x+4x^2+6x}{x(2x+3)^2}\\\\\dfrac{dy}{dx}=\dfrac{8x^2+18x+9}{x(2x+3)^2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Bx%282x%2B3%29%5E2%5D%7D%5Ctimes%20%5Bx%27%282x%2B3%29%5E2%2B%282x%2B3%29%5E2%27x%5D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Bx%282x%2B3%29%5E2%5D%7D%5Ctimes%20%5B%282x%2B3%29%5E2%2B2x%282x%2B3%29%5D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B4x%5E2%2B9%2B12x%2B4x%5E2%2B6x%7D%7Bx%282x%2B3%29%5E2%7D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B8x%5E2%2B18x%2B9%7D%7Bx%282x%2B3%29%5E2%7D)
Hence, the required derivative is 