Answer:
The theory of evolution was proposed by Charles Darwin and was first formulated in his book, "Origin of Species" in 1859. It focuses on the changes in species and populations over time
Answer:
Meiosis II
Telophase II
Explanation:
The chromosomes line up in a similar way to the metaphase stage of mitosis. The sister chromatids separate and move toward opposite ends of the cell. Meiosis II results in four haploid (N) daughter cells. You have FOUR (4) daughter cells with the haploid number (N) of chromosomes
Answer:
- Interruption in the genetic flow between separated groups
- The emergence of new mutations in each of the groups, and their accumulation in time. Slow and gradual differentiation between populations.
- Genetic divergence by natural selection and reproductive isolation
- Prezigotic isolation mechanisms
Explanation:
Allopatric speciation consists of the geographic separation of a continuous genetic background that can give place to two or more new geographically isolated populations. These separations might be due to migration, extinction of geographically intermediate populations, or geological events. In this speciation, some barriers impede genetic interchange, or genetic flux, as the two new groups that are separated can not get together and mate anymore. These barriers might be geographical or ecological.
The process of allopatric speciation involves different steps that affect organisms:
- The emergence of the barrier.
- Interruption in the genetic interchange
- The occurrence of new mutations and their accumulation in time in each population. Slow and gradual differentiation.
- Genetic divergence by natural selection and reproductive isolation makes it impossible for the two groups to mate even if the barrier disappears.
- Prezigotic isolation mechanisms will be favored by selection if occurs a secondary contact between the new species in formation.
Answer:
The correct answer is E-processing of exons in mRNA that results in a single gene coding for multiple proteins.
Explanation
Splicing is the process where introns are cut out of the mRNA so only the coding parts for proteins. In this way, genes can code for many proteins, depending on how the amino-acids are arranged.