1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galben [10]
3 years ago
7

Will you please help me

Mathematics
2 answers:
UkoKoshka [18]3 years ago
6 0

Answer: B

Step-by-step explanation:

In the image below answer b is in color green and the rest of the answers are clear straight lines making them linear.

horsena [70]3 years ago
4 0

Answer:

b

Step-by-step explanation:

You might be interested in
Given the rectangle abcd shown below has a total area of 72. E is in the midpoint of bc and f is the midpoint of dc. What is the
scoray [572]

Refer to the attached image.

Given the rectangle ABCD of length 'l' and height 'h'.

Therefore, CD=AB = 'l' and BC = AD = 'h'

We have to determine the area of triangle AEF.

Area of triangle AEF = Area of rectangle ABCD - Area of triangle ADF - Area of triangle ECF - Area of triangle ABE

Area of triangle ADF = \frac{1}{2}bh

= \frac{1}{2}(DF \times AD)

= \frac{1}{2}(\frac{l}{2} \times h)

=\frac{lh}{4}

Area of triangle ECF = \frac{1}{2}bh

= \frac{1}{2}(CF \times CE)

= \frac{1}{2}(\frac{l}{2} \times \frac{h}{2})

=\frac{lh}{8}

Area of triangle ABE = \frac{1}{2}bh

= \frac{1}{2}(AB \times BE)

= \frac{1}{2}(l \times \frac{h}{2})

=\frac{lh}{4}

Now, area of triangle AEF =

Area of rectangle ABCD - Area of triangle ADF - Area of triangle ECF - Area of triangle ABE

= 72 - (\frac{lh}{4} + \frac{lh}{8} + \frac{lh}{4})

= 72 - (\frac{2lh+lh+2lh}{8})

=72 - (\frac{5lh}{8})

=72 - (\frac{5 \times 72}{8})

=\frac{72 \times 8 - (5 \times 72)}{8}

= 27 units

Therefore, the area of triangle AEF is 27 units.

8 0
3 years ago
5. On a business trip Bob traveled 245.22 miles. If gasoline was $2.87 per gallon and the car averaged 25.3 miles per gallon, de
Alecsey [184]

The total cost of the trip was $27.81

Step-by-step explanation:

Given,

Distance traveled = 245.22 miles

Distance traveled per gallon = 25.3 miles

Gallons used for 245.22 miles = \frac{Total\ distance}{Distance\ per\ gallon}

Gallons used for 245.22 miles = \frac{245.22}{25.3} = 9.69\ gallons

9.69 gallons were used for 245.22 miles.

Cost per gallon = $2.87

Cost of 9.69 gallons = 2.87*9.69 = $27.81

The total cost of the trip was $27.81

Keywords: division, multiplication

Learn more about division at:

  • brainly.com/question/2115122
  • brainly.com/question/2116906

#LearnwithBrainly

4 0
3 years ago
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
How do I solve for r b=1/6Rw
dusya [7]

                                                  <u>b = 1/6 r w</u>

Multiply each side by  6 :         6b = r w

Divide each side by  'w' :    <em>6b / w = r


</em>
5 0
3 years ago
I say trapezoidal prism. Am I right! Thanks
Westkost [7]

The correct answer is:

D=Trapezoidal Prism

7 0
3 years ago
Read 2 more answers
Other questions:
  • How do u solve 11p + 16 = 2p + 7 ?? please give a step by step *EXTRA POINTS*
    10·2 answers
  • A car was sold at $34000. That price was 85℅ of the orginal price. What was the original price?
    14·1 answer
  • What is the product ?matrices
    10·1 answer
  • Which procedure would you use to convert a fraction to a​ decimal? Convert <br> 2/5 to a decimal.
    15·2 answers
  • What is the volume of a square pyramid with a base length of 4 cm and a height of 9 cm ​
    11·1 answer
  • Solve the inequality for u.​
    6·1 answer
  • Write a linear function f with the given values. <br><br> f(0) = 2. f(2) = 4
    7·1 answer
  • Find the perimeter of the polygon with the given vertices. Round your answer to the nearest hundredth.
    7·1 answer
  • Solve the system of equations <br><br> 4x-5y=21<br> 3x+10y=-53
    7·1 answer
  • ) If xyz = 1, prove that: ​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!