Hello,
I suppose equations are:
x+y=3 (1)
x+2y=9 (2)
(2)-(1)==>y=6
(1)==>x=3-6
x=-3, y=6
Sol={(-3,6)}
Answer:
- Both expressions should be evaluated with two different values. If for each substituted value, the final values of the expressions are the same, then the two expressions must be equivalent.
Step-by-step explanation:
<u>Given expressions</u>
- 4x - x + 5 = 3x + 5
- 8 - 3x - 3 = -3x + 5
Compared, we see the expressions are different as 3x and -3x have different coefficient
<u>Answer options</u>
Both expressions should be evaluated with one value. If the final values of the expressions are both positive, then the two expressions must be equivalent.
- Incorrect. Positive outcome doesn't mean equivalent
----------------------------------------
Both expressions should be evaluated with one value. If the final values of the expressions are the same, then the two expressions must be equivalent.
- Incorrect. There are 2 values- variable and constant
----------------------------------------
Both expressions should be evaluated with two different values. If for each substituted value, the final values of the expressions are positive, then the two expressions must be equivalent.
- Incorrect. Positive outcome doesn't mean equivalent.
----------------------------------------
Both expressions should be evaluated with two different values. If for each substituted value, the final values of the expressions are the same, then the two expressions must be equivalent.
Answer:
square root of 113 or 10.6
Step-by-step explanation:
7^2+ 8^2= C
49+64=C
113=C
square root of 113 OR 10.6
Hope this helped :)
Answer: 4x-25 is the answer
Step-by-step explanation:
Answer:
7.5 cm^2
Step-by-step explanation:
Aqui, temos Cos A = 0,8 = 8/10 = 4/5.
Cos B = 0,6 = 6/10 = 3/5.
O que isto significa é que os dois outros lados do triângulo retângulo são 3 cm e 5 cm, respectivamente.
Isso ocorre porque, o oposto do ângulo agudo A é adjacente ao ângulo agudo B e vice-versa.
Portanto, a partir dos valores de ambos, podemos obter os dois outros lados.
Matematicamente, a área da direita é 1/2 * b * h b e h são 3 e 5, respectivamente.
Assim, área = 1/2 * 3 * 5 = 7,5 cm ^ 2