The sum of the sum notation ∞Σn=1 2(1/5)^n-1 is S= 5/2
<h3>How to determine the sum of the notation?</h3>
The sum notation is given as:
∞Σn=1 2(1/5)^n-1
The above notation is a geometric sequence with the following parameters
- Initial value, a = 2
- Common ratio, r = 1/5
The sum is then calculated as
S = a/(1 - r)
The equation becomes
S = 2/(1 - 1/5)
Evaluate the difference
S = 2/(4/5)
Express the equation as products
S = 2 * 5/4
Solve the expression
S= 5/2
Hence, the sum of the sum notation ∞Σn=1 2(1/5)^n-1 is S= 5/2
Read more about sum notation at
brainly.com/question/542712
#SPJ1
Answer:
367,679
Again someone helped me with this question so you get the answer too.
Solve the inequality 1.6-(3-2y)<5.
1. Rewrite this inequality without brackets:
1.6-3+2y<5.
2. Separate terms with y and without y in different sides of inequality:
2y<5-1.6+3,
2y<6.4.
3. Divide this inequality by 2:
y<3.2
4. The greatest integer that satisfies this inequality is 3.
Answer: 3.
Answer:
4 miles
Step-by-step explanation:
because radius is 2 times of circle
The exact circumference is 60ft