Answer:
1 and 2.
Midpoints calculated, plotted and connected to make the triangle DEF, see the attached.
- D= (-2, 2), E = (-1, -2), F = (-4, -1)
3.
As per definition, midsegment is parallel to a side.
Parallel lines have same slope.
<u>Find slopes of FD and CB and compare. </u>
- m(FD) = (2 - (-1))/(-2 -(-4)) = 3/2
- m(CB) = (1 - (-5))/(1 - (-3)) = 6/4 = 3/2
- As we see the slopes are same
<u>Find the slopes of FE and AB and compare.</u>
- m(FE) = (-2 - (- 1))/(-1 - (-4)) = -1/3
- m(AB) = (1 - 3)/(1 - (-5)) = -2/6 = -1/3
- Slopes are same
<u>Find the slopes of DE and AC and compare.</u>
- m(DE) = (-2 - 2)/(-1 - (-2)) = -4/1 = -4
- m(AC) = (-5 - 3)/(-3 - (-5)) = -8/2 = -4
- Slopes are same
4.
As per definition, midsegment is half the parallel side.
<u>We'll show that FD = 1/2CB</u>
- FD =
=
= 
- CB =
=
= 2
- As we see FD = 1/2CB
<u>FE = 1/2AB</u>
- FE =
=
= 
- AB =
=
= 2
- As we see FE = 1/2AB
<u>DE = 1/2AC</u>
- DE =
=
= 
- AC =
=
= 2
- As we see DE = 1/2AC
Answer:
a.) dx3x² + 2
Use the properties of integrals
That's
integral 3x² + integral 2
= 3x^2+1/3 + 2x + c
= 3x³/3 + 2x + c
= x³ + 2x + C
where C is the constant of integration
b.) x³ + 2x
Use the properties of integrals
That's
integral x³ + integral 2x
= x^3+1/4 + 2x^1+1/2
= x⁴/4 + 2x²/2 + c
= x⁴/4 + x² + C
c.) dx6x 5 + 5
Use the properties of integrals
That's
integral 6x^5 + integral 5
= 6x^5+1/6 + 5x
= 6x^6/6 + 5x
= x^6 + 5x + C
d.) x^6 + 5x
integral x^6 + integral 5x
= x^6+1/7 + 5x^1+1/2
= x^7/7 + 5/2x² + C
Hope this helps
A right rectangular pyramid when sliced vertically, the shape of the cross-section is known as Triangle.
<h3>What is A triangle?</h3>
This is known to be a kind of shape that is said to be in a closed form and it is also known to be a 2-dimensional shape that has 3 sides, 3 angles, and also 3 vertices.
Note that when the when the right rectangular pyramid is sliced vertically (down) by a plane passing through the of the pyramid, the new shape of the cross-section is a triangle.
See full question below
A right rectangular pyramid is sliced vertically (down) by a plane passing through the of the pyramid. What is the shape of the cross-section?
A. Rectangle
B. Pyramid
C. Triangle
D. Trapezoid
See full question below
Learn more about triangle from
brainly.com/question/17335144
#SPJ1
Answer:
65°
Step-by-step explanation:
Radii CA and CB are perpendicular to tangent lines AT and BT, so

Since angle BAT is equal to 65°, angle CAB has measure

Consider triangle ACB. This triangle is isosceles, because CA=CB as radii of the circle. Two angles adjacent to the base are congruent, thus

The sum of the measures of all interior angles in triangle is always 180°, so

Angle ACB is central angle subtended on the minor arc AB, angle APB is inscribed angle subtended on the same minor arc AB. The measure of inscribed angle is half the measure of central angle subtended on the same arc, so
