Answer:
The equation of line parallel to given line passing through (8,-7) is:
![y = -\frac{5}{4}x+3](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B5%7D%7B4%7Dx%2B3)
Step-by-step explanation:
Given line is:
5x+4y=16
first of all, we have to convert the equation of given line in slope-intercept form
![4y = -5x+16](https://tex.z-dn.net/?f=4y%20%3D%20-5x%2B16)
Dividing both sides by 4
![\frac{4y}{4} = -\frac{5x}{4} + \frac{16}{4}\\y = -\frac{5}{4}x+4](https://tex.z-dn.net/?f=%5Cfrac%7B4y%7D%7B4%7D%20%3D%20-%5Cfrac%7B5x%7D%7B4%7D%20%2B%20%5Cfrac%7B16%7D%7B4%7D%5C%5Cy%20%3D%20-%5Cfrac%7B5%7D%7B4%7Dx%2B4)
Slope intercept form is:
![y=mx+b](https://tex.z-dn.net/?f=y%3Dmx%2Bb)
The slope of given line is:
![m = -\frac{5}{4}](https://tex.z-dn.net/?f=m%20%3D%20-%5Cfrac%7B5%7D%7B4%7D)
Let m1 be the slope of line parallel to given line
"The slopes of two parallel lines are equal"
![m = m_1\\m_1 = -\frac{5}{4}](https://tex.z-dn.net/?f=m%20%3D%20m_1%5C%5Cm_1%20%3D%20-%5Cfrac%7B5%7D%7B4%7D)
The equation of line parallel to given line will be:
![y = m_1x+b](https://tex.z-dn.net/?f=y%20%3D%20m_1x%2Bb)
Putting the value of slope
![y = -\frac{5}{4}x+b](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B5%7D%7B4%7Dx%2Bb)
Putting the point (8,-7) in the equation
![-7 = -\frac{5}{4}(8)+b\\-7 = -(5)(2) + b\\-7 = -10+b\\b = -7 +10\\b = 3](https://tex.z-dn.net/?f=-7%20%3D%20-%5Cfrac%7B5%7D%7B4%7D%288%29%2Bb%5C%5C-7%20%3D%20-%285%29%282%29%20%2B%20b%5C%5C-7%20%3D%20-10%2Bb%5C%5Cb%20%3D%20-7%20%2B10%5C%5Cb%20%3D%203)
Putting the value of b
![y = -\frac{5}{4}x+3](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B5%7D%7B4%7Dx%2B3)
Hence,
The equation of line parallel to given line passing through (8,-7) is:
![y = -\frac{5}{4}x+3](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B5%7D%7B4%7Dx%2B3)