I don’t exactly understand the question, I’m open to help though!!!
The hypothesis by Coleman was that the product of the ob+ gene was the appetite suppressing hormone. Hence, the homozygous ob/ob mutant are in a position to synthesize that hormone, and its circulating level would be zero. He also hypothesized that the product of the db+ gene was the receptor for the appetite-suppressing hormone. Thus, the homozygous db/db mutant would be able to synthesize the hormone but would not be in a position to respond to it. It would eat excessively and produce large amounts of body fat, which in turn would produce large amounts of appetite-suppressing hormone . In the absence of a receptor, the db/db mutant's hormone level would remain abnormally high.
Coleman's hypothesis were confirmed when the precise functions of the ob+ and db+ genes were determined. The peptide hormone encoded by the ob+ gene was named Leptin.
Below are the questions:
A) A hovering mosquito is hit by a raindrop that is 45 times as massive and falling at 8.9m/s , a typical raindrop speed. How fast is the raindrop, with the attached mosquito, falling immediately afterward if the collision is perfectly inelastic?
<span>B) Because a raindrop is "soft" and deformable, the collision duration is a relatively long 8.0 ms. What is the mosquito's average acceleration, in g's, during the collision? The peak acceleration is roughly twice the value you found, but the mosquito's rigid exoskeleton allows it to survive accelerations of this magnitude. In contrast, humans cannot survive an acceleration of more than about 10 g.
</span>
Below are the answers:
a. <span>MU = (M + m)V; where M = 45 m, U = 8.9 m/s, find V = ?. V = (45/46)*8.9 = 8.7 m/s
</span>
b. <span>F = m dV/dT = m 8.7/8E-3 = m 1.0875E+03; so G = 1.0875E+03/9.8 = 111 G's.</span>
That would be the <span>Cone-bearing plants.</span>
There ar 5 in nitrogen, 20 in hydrogen, and 5 in chlorine. In all that’s 30 compounds.