What is the solution set of x2 + y2 = 26 and x − y = 6? A. {(5, -1), (-5, 1)} B. {(1, 5), (5, 1)} C. {(-1, 5), (1, -5)} D. {(5,
Rus_ich [418]
He two equations given are
x^2 + y^2 = 26
And
x - y = 6
x = y +6
Putting the value of x from the second equation to the first equation, we get
x^2 + y^2 = 26
(y + 6) ^2 + y^2 = 26
y^2 + 12y + 36 + y^2 = 26
2y^2 + 12y + 36 - 26 = 0
2y^2 + 12y + 10 = 0
y^2 + 6y + 5 = 0
y^2 + y + 5y + 5 = 0
y(y + 1) + 5 ( y + 1) = 0
(y + 1)(y + 5) = 0
Then
y + 1 = 0
y = -1
so x - y = 6
x + 1 = 6
x = 5
Or
y + 5 = 0
y = - 5
Again x = 1
So the solutions would be (-1, 5), (1 , -5). The correct option is option "C".
The answer is d!
Explanation:
The solution is the point where the lines cross. So (-1, -2)
Answer:
y ≥ 3x +4
Step-by-step explanation:
The line is solid, so the inequality will include the "or equal to" case. The shading is above the line, so values of y greater than or equal to those on the line are in the solution set. The only choice with the correct (≥) inequality symbol is ...
y ≥ 3x +4
Answer:
so the first awnser is 90 and i am verry sorry but i do not know how to do the second one and the third does not have enogh information
Step-by-step explanation:
1. so first 12 inches is one foot, multiply 12 by 60 to get 720 now because it says that 1 inch is 8 feet and 720 is how manny inches it is so 720 divided by 8 is 90.