Answer:4
Step-by-step explanation:
A zero-coupon bond doesn’t make any payments. Instead, investors purchase the zero-coupon bond for less than its face value, and when the bond matures, they receive the face value.
To figure the price you should pay for a zero-coupon bond, you'll follow these steps:
Divide your required rate of return by 100 to convert it to a decimal.
Add 1 to the required rate of return as a decimal.
Raise the result to the power of the number of years until the bond matures.
Divide the face value of the bond to calculate the price to pay for the zero-coupon bond to achieve your desired rate of return.
First, divide 4 percent by 100 to get 0.04. Second, add 1 to 0.04 to get 1.04. Third, raise 1.04 to the sixth power to get 1.2653. Lastly, divide the face value of $1,000 by 1.2653 to find that the price to pay for the zero-coupon bond is $790,32.
Answer:
3000
Step-by-step explanation:
1000 + 2000 = 3000
Answer: 132
Step-by-step explanation:
It looks like the differential equation is

Check for exactness:

As is, the DE is not exact, so let's try to find an integrating factor <em>µ(x, y)</em> such that

*is* exact. If this modified DE is exact, then

We have

Notice that if we let <em>µ(x, y)</em> = <em>µ(x)</em> be independent of <em>y</em>, then <em>∂µ/∂y</em> = 0 and we can solve for <em>µ</em> :

The modified DE,

is now exact:

So we look for a solution of the form <em>F(x, y)</em> = <em>C</em>. This solution is such that

Integrate both sides of the first condition with respect to <em>x</em> :

Differentiate both sides of this with respect to <em>y</em> :

Then the general solution to the DE is

Answer: As the dough rises, the distance between the raisins increases, indicating that the galaxies are moving apart.
Step-by-step explanation: