Answer:
Explanation:
I think the answer is statement no 3.
Hope it helps.
Answer: The force constant k is 10600 kg/s^2
Step by step:
Use the law of energy conservation. When the elevator hits the spring, it has a certain kinetic and a potential energy. When the elevator reaches the point of still stand the kinetic and potential energies have been transformed to work performed by the elevator in the form of friction (brake clamp) and loading the spring.
Let us define the vertical height axis as having two points: h=2m at the point of elevator hitting the spring, and h=0m at the point of stopping.
The total energy at the point h=2m is:

The total energy at the point h=0m is:

The two Energy values are to be equal (by law of energy conservation), which allows us to determine the only unknown, namely the force constant k:

Answer:
a) I=35mA
b) P=1.73W
Explanation:
a) The max emf obtained in a rotating coil of N turns is given by:

where N is the number of turns in the coil, B is the magnitude of the magnetic field, A is the area and w is the angular velocity of the coil.
By calculating A and replacing in the formula (1G=10^{-4}T) we get:


Finally, the peak current is given by:

b)
we have that


hope this helps!!
The simplest kinetic model is based on the assumptions that: (1) the gas is composed of a large number of identical molecules moving in random directions, separated by distances that are large compared with their size; (2) the molecules undergo perfectly elastic collisions (no energy loss) with each other and with the walls of the container, but otherwise do not interact; and (3) the transfer of kinetic energy between molecules is heat.
Answer:
well...
Explanation:
Acoording to my brain i think that the answer would be C