The number of molecules that are in balloon are = 2.227 x10^23 molecules
<h3> calculation</h3>
calculate the number of moles of NO
moles = mass/molar mass
molar mass of NO = 14+ 16 = 30 g/mol
moles is therefore= 11.1 g/30g/mol= 0.37 moles
by use of Avogadro's constant that is
1 mole= 6.02 x10^23 molecules
0.37 =? molecules
=(6.02 x10^23 x 0.37 moles)/ 1mole=2.227 x10^23 molecules
Answer:
Al(OH)3 ? i hope this is what you mean.
Answer:
12 moles of CO₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
CO₂ + H₂O —> H₂CO₃
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Finally, we shall determine the number of moles of CO₂ that will dissolve in water to produce 12 moles of H₂CO₃. This can be obtained as follow:
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Therefore, 12 moles of CO₂ will also dissolve in water to produce 12 moles of H₂CO₃.
Thus, 12 moles of CO₂ is required.
The sun's core is where Hydrogen atoms produce energy as they convert to molecules of Helium. Helium that is produced by the conversion of hydrogen into energy is related to the solar core in the sense that the conversion process produces energy captured in the core. I hope this helps you.
Answer:
Explanation:
equilibrium constant
Kc = [ C ]² / [ A ] [ B ]
= .5² / .2 x 3
= .4167
Let moles of A to be added be n
concentration of A unreacted becomes .2 + n M
increase of product C by .2 M will require use of A and B be .1 M
So unreacted A = .2 + n - .1 = n + .1
Kc = [ C ]² / [ A ] [ B ]
.4167 = .7² / ( n + .1 ) ( 3 - .1 )
n + .1 = .4
n = . 3 moles .
So .3 moles of A to be added .