1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prisoha [69]
3 years ago
7

Making the simplistic assumption that the dissolved NaCl(s) does not affect the volume of the solvent water, determine the const

ants m and b in the equation Molarity = mdensity + b that relates the NaCl molarity to the NaCl(aq) density. Take the density of water to be 1.00 g/mL and the molar mass of NaCl to be 58.5 g/mol.
I am having a very difficult time answering this question. There just doesn't seem to be enough information to determine the constants.
Chemistry
2 answers:
shtirl [24]3 years ago
7 0

Answer:

  • m = 1,000/58.5
  • b = - 1,000 / 58.5

1) Variables

  • molarity: M
  • density of the solution: d
  • moles of NaCl: n₁
  • mass of NaCl: m₁
  • molar mass of NaCl: MM₁
  • total volume in liters: Vt
  • Volume of water in mililiters: V₂
  • mass of water: m₂

2) Density of the solution: mass in grams / volume in mililiters

  • d = [m₁ + m₂] / (1000Vt)

3) Mass of NaCl: m₁

    Number of moles = mass in grams / molar mass

    ⇒ mass in grams = number of moles × molar mass

        m₁ = n₁ × MM₁


4) Number of moles of NaCl: n₁

   Molarity = number of moles / Volume of solution in liters

   M = n₁ / Vt

   ⇒ n₁ = M × Vt


5) Substitue in the equation of m₁:

   m₁ = M × Vt × MM₁


6) Substitute in the equation of density:

    d = [M × Vt × MM₁ + m₂] / (1000Vt)


7) Simplify and solve for M

  • d = M × Vt × MM₁ / (1000Vt) + m₂/ (1000Vt)
  • d = M × MM₁ / (1000) + m₂/ (1000Vt)

Making the simplistic assumption that the dissolved NaCl(s) does not affect the volume of the solvent water means 1000Vt = V₂  

  • d = M × MM₁ / (1000) + m₂/ V₂

        m₂/ V₂ is the density of water: 1.00 g/mL

  • d = M × MM₁ / (1000) + 1.00 g/mL
  • M × MM₁ / (1000) = d - 1.00 g/mL
  • M = [1,000/MM₁] d - 1,000/ MM₁

8) Substituting MM₁ = 58.5 g/mol

  • M = [1,000/58.5] d - [1,000/ 58.5]

Comparing with the equation Molarity = m×density + b, you obtain:

  • m = 1,000/58.5
  • b = - 1,000/58.5
sashaice [31]3 years ago
6 0

The value of m is \boxed{{\text{1/molar mass}}\left({0.0170\;{\text{mol}}\cdot{{\text{g}}^{-1}}}\right)} and the value of b is \boxed{{\text{mol/volume}}}.

Further Explanation:

The property is a unique feature of the substance that differentiates it from the other substances. It is classified into two types:

1. Intensive properties:

These are the properties that depend on the nature of the substance. These don't depend on the size of the system. Their values remain unaltered even if the system is further divided into a number of subsystems. Temperature, refractive index, molarity, concentration, pressure, and density are some of the examples of intensive properties.

2. Extensive properties:

These are the properties that depend on the amount of the substance. These are additive in nature when a single system is divided into many subsystems. Mass, enthalpy, volume, energy, size, weight, and length are some of the examples of extensive properties.

Density is defined as the ratio between mass and volume. Both mass and volume are the physical properties that are extensive in nature and their ratio comes out to be an intensive quantity that depends only on the nature of the substance, not on the amount of the substance. The formula to calculate the density of a substance is,

{\text{Density of substance}}\left({{\rho }}\right){\text{=}}\frac{{{\text{Mass of substance}}\left({\text{M}}\right)}}{{{\text{Volume of substance}}\left({\text{V}}\right)}}

Molarity is a concentration term that is defined as the number of moles of solute dissolved in one litre of the solution. It is denoted by M and its unit is mol/L.

The formula to calculate the molarity of the solution is as follows:

{\text{Molarity of solution}}=\frac{{{\text{amount}}\;\left({{\text{mol}}}\right)\;{\text{of}}\;{\text{solute}}}}{{\;{\text{volume}}\left({\text{L}}\right)\;{\text{of}}\;{\text{solution}}}}

The given expression is,

{\text{Molarity}}={\text{m}}\left({{\text{density}}}\right)+{\text{b}}           …… (1)

Substitute the formula of given quantities in equation (1).

\frac{{{\text{mol}}}}{{{\text{Volume}}}}={\text{m}}\left({\frac{{{\text{mass}}}}{{{\text{Volume}}}}}\right)+{\text{b}}                          …… (2)

Quantities with same units are added, subtracted, multiplied or divided. So two quantities on the right-hand side of equation (2) must have the same units and equation (2) becomes,

\frac{{{\text{mol}}}}{{{\text{Volume}}}}={\text{m}}\left({\frac{{{\text{mass}}}}{{{\text{Volume}}}}}\right)+{\text{m}}\left({\frac{{{\text{mass}}}}{{{\text{Volume}}}}}\right)                                 …… (3)

Solve for units of m,

{\text{m}}=\frac{{{\text{mol}}}}{{{\text{mass}}}}

Or it can be written as,

{\text{m}}=\frac{{\text{1}}}{{{\text{Molar mass}}}}                               …… (4)

Substitute 58.5 g/mol for the molar mass of NaCl in equation (4).

\begin{aligned}{\text{m}}&=\frac{{{\text{1 mol}}}}{{{\text{58}}{\text{.5 g}}}}\\&=0.0170\;{\text{mol}}\cdot{{\text{g}}^{-1}}\\\end{aligned}

The unit of b is equal to that of m(density). So its unit can be calculated as follows:

\begin{aligned}{\text{b}}&=\left({\frac{{{\text{mol}}}}{{{\text{mass}}}}}\right)\left({\frac{{{\text{mass}}}}{{{\text{Volume}}}}}\right)\\&=\frac{{{\text{mol}}}}{{{\text{Volume}}}}\\\end{aligned}

Learn more:

1. Rate of chemical reaction: brainly.com/question/1569924

2. The main purpose of conducting experiments: brainly.com/question/5096428

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Keys to studying chemistry

Keywords: Property, intensive, extensive, physical properties, chemical properties, density, substance, amount, quantity, nature, molarity, units, m, b, mol/L, mol/volume, molar mass.

You might be interested in
How do ozone molecules form in the stratosphere?
alekssr [168]
Sunlight breaks apart an oxygen molecule to form separate oxygen atoms <span />
3 0
3 years ago
How many atoms are in an oxygen molecule?
ZanzabumX [31]

Answer:

two atoms

Explanation:

In its stable molecular form, oxygen exists as two atoms and is written O2. to distinguish it from an atom of oxygen O, or ozone, a molecule of three oxygen atoms, O3. Even though each of these is all oxygen, combining atoms of the same element may give very different properties to the molecule.

6 0
3 years ago
How many moles of water are produced from 15 moles of oxygen?
Grace [21]

Answer:

30 moles

Explanation:

Water is H2O, meaning there is 2 Hydrogen atoms and 1 Oxygen atom. Oxygen is O2, because it is a diatomic molecule. (Hydrogen is also a diatomic molecule, so H2)

The equation, balanced, would have to be: 2H2 + O2 -----> 2H2O

I multiply 15 moles O2 by the molar ratio of (hydrogen/oxygen)

15 mol. O2 *  (2 mol. H2/1 mol O2) = 30 moles of water

8 0
3 years ago
Magnesium metal (0.100 mol) and a volume of aqueous hydrochloric acid that contains 0.500 mol of HCl are combined and react to c
jok3333 [9.3K]

Answer:

2.24 L of hydrogen gas, measured at STP, are produced.

Explanation:

Given, Moles of magnesium metal, Mg = 0.100 mol

Moles of hydrochloric acid, HCl = 0.500 mol

According to the reaction shown below:-

Mg_{(s)} + 2HCl_{(aq)}\rightarrow MgCl_2_{(aq)} + H_2_{(g)}

1 mole of Mg reacts with 2 moles of HCl

0.100 mol of Mg reacts with 2*0.100 mol of HCl

Moles of HCl must react = 0.200 mol

Available moles of HCl = 0.500 moles

Limiting reagent is the one which is present in small amount. Thus, Mg is limiting reagent.

The formation of the product is governed by the limiting reagent. So,

1 mole of Mg on reaction forms 1 mole of H_2

0.100 mole of Mg on reaction forms 0.100 mole of H_2

Mole of H_2 = 0.100 mol

At STP,  

Pressure = 1 atm  

Temperature = 273.15 K

Volume = ?

Using ideal gas equation as:

PV=nRT

where,  

P is the pressure

V is the volume

n is the number of moles

T is the temperature  

R is Gas constant having value = 0.0821 L.atm/K.mol

Applying the equation as:

1 atm × V L = 0.100 × 0.0821 L.atm/K.mol × 273.15 K  

<u>⇒V = 2.24 L</u>

2.24 L of hydrogen gas, measured at STP, are produced.

4 0
3 years ago
Determine if the data are qualitative or quantitative.
jonny [76]
Hi there!
Zinc: Is qualitative
Chlorine: is quantitative
Gallium: is neither
Nitrogen: is quantitative
Aluminum: is quantitative
If you need an explanation, please let me know !
Hope this helps and have a good day :) !
~Angel
8 0
3 years ago
Read 2 more answers
Other questions:
  • What is latice energy
    9·1 answer
  • How do scientists determine the number of neutrons in an isotope of an atom? O They find the number of protons. 0 They add the n
    9·1 answer
  • Dr. Garcia is performing an experiment to see how cell division in flies is affected by the addition of a certain protein, calle
    15·2 answers
  • Valuable ore deposits and gem crystals are often associated with _____. a. oceans b.oil deposits c. thin crustal areas d. igneou
    6·2 answers
  • In terms of atomic structure, explain why the first ionization energy K is less than that of Ca ?
    6·1 answer
  • What could we do to help restore some<br> balance to the carbon cycle?
    14·1 answer
  • One way to ensure that scientific claims are valid is to analyze who is presenting the information: only trust information prese
    8·2 answers
  • Name two things a magnetic can do
    9·1 answer
  • Have an infinite number of significant figures
    13·1 answer
  • What type of variable should there only be one of in an experiment? A) dependent B) independent C) control D) responding​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!