1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prisoha [69]
3 years ago
7

Making the simplistic assumption that the dissolved NaCl(s) does not affect the volume of the solvent water, determine the const

ants m and b in the equation Molarity = mdensity + b that relates the NaCl molarity to the NaCl(aq) density. Take the density of water to be 1.00 g/mL and the molar mass of NaCl to be 58.5 g/mol.
I am having a very difficult time answering this question. There just doesn't seem to be enough information to determine the constants.
Chemistry
2 answers:
shtirl [24]3 years ago
7 0

Answer:

  • m = 1,000/58.5
  • b = - 1,000 / 58.5

1) Variables

  • molarity: M
  • density of the solution: d
  • moles of NaCl: n₁
  • mass of NaCl: m₁
  • molar mass of NaCl: MM₁
  • total volume in liters: Vt
  • Volume of water in mililiters: V₂
  • mass of water: m₂

2) Density of the solution: mass in grams / volume in mililiters

  • d = [m₁ + m₂] / (1000Vt)

3) Mass of NaCl: m₁

    Number of moles = mass in grams / molar mass

    ⇒ mass in grams = number of moles × molar mass

        m₁ = n₁ × MM₁


4) Number of moles of NaCl: n₁

   Molarity = number of moles / Volume of solution in liters

   M = n₁ / Vt

   ⇒ n₁ = M × Vt


5) Substitue in the equation of m₁:

   m₁ = M × Vt × MM₁


6) Substitute in the equation of density:

    d = [M × Vt × MM₁ + m₂] / (1000Vt)


7) Simplify and solve for M

  • d = M × Vt × MM₁ / (1000Vt) + m₂/ (1000Vt)
  • d = M × MM₁ / (1000) + m₂/ (1000Vt)

Making the simplistic assumption that the dissolved NaCl(s) does not affect the volume of the solvent water means 1000Vt = V₂  

  • d = M × MM₁ / (1000) + m₂/ V₂

        m₂/ V₂ is the density of water: 1.00 g/mL

  • d = M × MM₁ / (1000) + 1.00 g/mL
  • M × MM₁ / (1000) = d - 1.00 g/mL
  • M = [1,000/MM₁] d - 1,000/ MM₁

8) Substituting MM₁ = 58.5 g/mol

  • M = [1,000/58.5] d - [1,000/ 58.5]

Comparing with the equation Molarity = m×density + b, you obtain:

  • m = 1,000/58.5
  • b = - 1,000/58.5
sashaice [31]3 years ago
6 0

The value of m is \boxed{{\text{1/molar mass}}\left({0.0170\;{\text{mol}}\cdot{{\text{g}}^{-1}}}\right)} and the value of b is \boxed{{\text{mol/volume}}}.

Further Explanation:

The property is a unique feature of the substance that differentiates it from the other substances. It is classified into two types:

1. Intensive properties:

These are the properties that depend on the nature of the substance. These don't depend on the size of the system. Their values remain unaltered even if the system is further divided into a number of subsystems. Temperature, refractive index, molarity, concentration, pressure, and density are some of the examples of intensive properties.

2. Extensive properties:

These are the properties that depend on the amount of the substance. These are additive in nature when a single system is divided into many subsystems. Mass, enthalpy, volume, energy, size, weight, and length are some of the examples of extensive properties.

Density is defined as the ratio between mass and volume. Both mass and volume are the physical properties that are extensive in nature and their ratio comes out to be an intensive quantity that depends only on the nature of the substance, not on the amount of the substance. The formula to calculate the density of a substance is,

{\text{Density of substance}}\left({{\rho }}\right){\text{=}}\frac{{{\text{Mass of substance}}\left({\text{M}}\right)}}{{{\text{Volume of substance}}\left({\text{V}}\right)}}

Molarity is a concentration term that is defined as the number of moles of solute dissolved in one litre of the solution. It is denoted by M and its unit is mol/L.

The formula to calculate the molarity of the solution is as follows:

{\text{Molarity of solution}}=\frac{{{\text{amount}}\;\left({{\text{mol}}}\right)\;{\text{of}}\;{\text{solute}}}}{{\;{\text{volume}}\left({\text{L}}\right)\;{\text{of}}\;{\text{solution}}}}

The given expression is,

{\text{Molarity}}={\text{m}}\left({{\text{density}}}\right)+{\text{b}}           …… (1)

Substitute the formula of given quantities in equation (1).

\frac{{{\text{mol}}}}{{{\text{Volume}}}}={\text{m}}\left({\frac{{{\text{mass}}}}{{{\text{Volume}}}}}\right)+{\text{b}}                          …… (2)

Quantities with same units are added, subtracted, multiplied or divided. So two quantities on the right-hand side of equation (2) must have the same units and equation (2) becomes,

\frac{{{\text{mol}}}}{{{\text{Volume}}}}={\text{m}}\left({\frac{{{\text{mass}}}}{{{\text{Volume}}}}}\right)+{\text{m}}\left({\frac{{{\text{mass}}}}{{{\text{Volume}}}}}\right)                                 …… (3)

Solve for units of m,

{\text{m}}=\frac{{{\text{mol}}}}{{{\text{mass}}}}

Or it can be written as,

{\text{m}}=\frac{{\text{1}}}{{{\text{Molar mass}}}}                               …… (4)

Substitute 58.5 g/mol for the molar mass of NaCl in equation (4).

\begin{aligned}{\text{m}}&=\frac{{{\text{1 mol}}}}{{{\text{58}}{\text{.5 g}}}}\\&=0.0170\;{\text{mol}}\cdot{{\text{g}}^{-1}}\\\end{aligned}

The unit of b is equal to that of m(density). So its unit can be calculated as follows:

\begin{aligned}{\text{b}}&=\left({\frac{{{\text{mol}}}}{{{\text{mass}}}}}\right)\left({\frac{{{\text{mass}}}}{{{\text{Volume}}}}}\right)\\&=\frac{{{\text{mol}}}}{{{\text{Volume}}}}\\\end{aligned}

Learn more:

1. Rate of chemical reaction: brainly.com/question/1569924

2. The main purpose of conducting experiments: brainly.com/question/5096428

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Keys to studying chemistry

Keywords: Property, intensive, extensive, physical properties, chemical properties, density, substance, amount, quantity, nature, molarity, units, m, b, mol/L, mol/volume, molar mass.

You might be interested in
Enter your answer in the provided box. Calculate the number of moles of CrCl, that could be produced from 49.4 g Cr202 according
Mrrafil [7]

Answer:

0.4694 moles of CrCl₃

Explanation:

The balanced equation is:

Cr₂O₃(s) + 3CCl₄(l) → 2CrCl₃(s) + 3COCl₂(aq)

The stoichiometry of the equation is how much moles of the substances must react to form the products, and it's represented by the coefficients of the balanced equation. So, 1 mol of Cr₂O₃ must react with 3 moles of CCl₄ to form 2 moles of CrCl₃ and 3 moles of COCl₂.

The stoichiometry calculus must be on a moles basis. The compounds of interest are Cr₂O₃ and CrCl₃. The molar masses of the elements are:

MCr = 52 g/mol

MCl = 35.5 g/mol

MO = 16 g/mol

So, the molar mass of the Cr₂O₃ is = 2x52 + 3x35.5 = 210.5 g/mol.

The number of moles is the mass divided by the molar mass, so:

n = 49.4/210.5 = 0.2347 mol of Cr₂O₃.

For the stoichiometry:

1 mol of Cr₂O₃ ------------------- 2 moles of CrCl₃

0.2347 mol of Cr₂O₃----------- x

By a simple direct three rule:

x = 0.4694 moles of CrCl₃

6 0
3 years ago
Which statements are scientific statements
Harrizon [31]
Wym there is no question or statements.
6 0
3 years ago
Give three example of univalent element​
Aloiza [94]

Answer:

Hydrogen and Chlorine

Explanation:

They are both an example in univalent atoms, because of their nature to form only one single bond.

I wasn't able to find another example, hope it helped! :)

4 0
2 years ago
What is the name for C2I3
Sidana [21]

Answer: The correct name for the compound C_2I_3  is, Dicarbon triiodide.

Explanation:

C_2I_3 is a covalent compound because in this compound the sharing of electrons takes place between carbon and iodine.. Both the elements are non-metals. Hence, it will form covalent bond.

The naming of covalent compound is given by:

The less electronegative element is written first.

The more electronegative element is written second. Then a suffix is added with it. The suffix added is '-ide'.

If atoms of an element is greater than 1, then prefixes are added which are 'mono' for 1 atom, 'di' for 2 atoms, 'tri' for 3 atoms and so on.

Hence, the correct name for the compound C_2I_3  is, Dicarbon triiodide..

4 0
2 years ago
Why does cesium have a positive 1 charge​
Sidana [21]

Answer:

1+1=5

Explanation:

5

4 0
3 years ago
Other questions:
  • Which statement(s) correctly compare the masses of protons, neutrons, and electrons? Check all that apply.
    12·1 answer
  • A heliox tank contains 32% helium and 68% oxygen. The total pressure in the tank is 475 kPa. What is the partial pressure of hel
    12·1 answer
  • How many grams of sodium nitrate (NaNO2) will dissolve in 100g of water at 20°C?​
    6·1 answer
  • Imagine that hotter magma is lying beneath an area of cooler magma deep in the mantle. What do you predict will happen?
    6·1 answer
  • What is the potential difference across a light bulb when there is 32 A of current and 8 Ω of resistance from the filament.
    8·1 answer
  • Select whether the statement is for Speed, Velocity, or Acceleration.
    9·1 answer
  • Which of the following is not a balanced nuclear equation?
    15·1 answer
  • When magnesium hydroxide reacts with nitric acid, it produces magnesium nitrate and water.
    11·1 answer
  • Which factor is a major contributor to outdoor air pollution?.
    13·1 answer
  • A Herbig-Haro (HH) object is:_:_________.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!